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CHAPTER I 

 

INTRODUCTION 

 

Many organisms, such as bacteria, plants and fungi are capable of synthesizing 

structurally diverse bioactive natural products. The diversity of structure and bioactivity 

of many of these compounds led to their use in pharmaceutical and agricultural 

applications.1 Bacterial natural products often contain sugar moieties attached to their 

core scaffolds and play significant roles in conferring biological activity. Many of these 

bioactive sugars are derived from deoxyaminosugar oxidations, the most common of 

which are deoxynitrosugars.2 

The recent advances in gene cluster elucidations of several natural products 

containing these N-oxidized sugars have enabled the proposal of biosynthetic pathways 

of these important moieties and set the stage for biochemical characterization of the 

enzymes involved in their biosynthesis. The biosynthetic pathways of deoxyaminosugar 

moieties in several natural products have been well studied; however, enzymes 

responsible for the amine oxidation in many deoxynitrosugar-containing and related 

natural products have not been characterized previous to our investigations. 

Given the biological importance of deoxysugar attachments, advances in 

studying new biosynthetic pathways will provide opportunities for in vivo pathway 

engineering leading to the production of new glycoconjugates with varied biological 

activities. Particularly, the characterization of the biosynthetic gene(s) for the key 

oxidation of aminosugars, clearly present the opportunity to increase the sugar 
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structural diversity of a vast array of glycosides via in vivo or in vitro pathway 

manipulation.2-3 Additionally, discovering new biocatalysts able to perform synthetically 

difficult enantioselective amine oxidations will have significant implications in the 

development of alternative synthetic methods. 

 

Biosynthesis of N-oxygenated deoxysugars 

 

Significance of deoxysugars in natural products 

Deoxysugars are common structural appendages of many bioactive natural 

products and are commonly found attached to polyketide scaffolds. Several 

therapeutically important drugs such as the antibiotic vancomycin and the anticancer 

agent doxorubicin contain sugars attached to their aglycone cores.4-5 These sugars play 

important roles in the biological activity by participating in the interaction between the 

drug and the cellular target.  In some cases, sugars participate in the mode of action of 

many drugs as they contribute to a variety of processes, including active 

transmembrane transport, stabilization of protein folding and enzyme inhibition.4-8 

The most prevalent sugars among sugar-containing bacterial secondary 

metabolites are deoxysugars, often deoxyaminosugars, the biosyntheses of which have 

been recently reviewed.3, 9 Structures of some common deoxysugars are shown in figure 

I-1. 
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Figure I-1. Examples of some deoxysugars found linked to several natural product scaffolds 

 

Deoxygenation of these sugars proceeds via nucleotide diphosphate (NDP) 

activation of 6-deoxyhexoses, usually D-glucose. The most common NDP activation is 

performed by attaching thymidine diphosphate (TDP) at the anomeric carbon of D-

glucose-1-phosphate.3 TDP-activated sugars are the most structurally diverse class of 

nucleotide sugars found in nature. After NDP-activation, deoxygenation proceeds via a 

4-keto-6-deoxy intermediate which is shared among all known deoxysugar pathways. 

A less common but very important sugar modification, deoxyaminosugar 

oxidation to hydroxylamino-, nitroso-Σ ŀƴŘ ƴƛǘǊƻǎǳƎŀǊǎ ǳƴƛǉǳŜƭȅ ŜȄǘŜƴŘǎ ƴŀǘǳǊŜΩǎ 

glycochemical diversity. Natural products containing N-oxidized deoxysugars exhibit a 

broad range of biological activities including antibacterial, antitumor, antimalarial, 

anticholesteromic, antiviral, and antidiabetic activities.2, 10-12 The oxidized congeners of 

deoxyaminosugars exist in many natural products such as everninomicin, rubradirin and 

kijanimicin.13-15 The hydroxylamino-, nitroso-, and nitrosugar variants have been isolated 

from the fermentation broth of the everninomicin producer Micromonospora 
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carbonecea var. africana. It has been shown that the antibacterial activity among these 

derivatives varied significantly.16 Modulation of biological activity through enzymatic 

deoxysugar modification could have significant impact on the development of 

therapeutically important agents derived from various natural glycoconjugates. 

Because of the biological importance of these deoxysugar moieties in various 

natural products, there has been a growing interest in developing new strategies for 

altering the deoxysugar appendages of important glycoconjugates either by synthetic or 

biosynthetic engineering approaches.  Biosynthetic engineering strategies require good 

understanding of the enzymes involved in the deoxysugar modifications and attachment 

to their corresponding aglycones. The gene clusters of many bioactive compounds 

containing deoxysugars have been sequenced and deposited into gene data banks, 

which made functional assignments of the encoded enzymes feasible. This enabled 

genetic and biochemical characterization of the biosynthetic pathways of several known 

deoxysugars.  Interestingly, studying these pathways showed that several sugar 

biosynthetic enzymes and glycosyltransferases (GTs), have broad substrate specificity 

allowing their use both in vivo and in vitro for altering the sugar moieties in these 

compounds, a process termed glycodiversification. Several successful 

glycodiversification studies have been performed on natural product glycoconjugates 

such as vancomycin and calicheamicin, yielding a new generation of glycorandomized 

derivatives of altered biological activities.2, 17-18 
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These glycodiversification startegies can be applied for many other natural-

product scaffolds utilizing substrate-flexible enzymes to generate libraries of substances 

for in vitro or in vivo glycoslation. Enzymes in the deoxysugar pathways can be further 

manipulated through protein engineering which can result in an expanded pool of 

glycorandomized derivatives. This new generation of compounds of varied biological 

activities could lead to the discovery of potentially important drugs to mitigate the 

daunting threats of human diseases. 

 

Nitrosugar-containing natural products 

Deoxynitrosugars are found in many isolated secondary metabolites with diverse 

scaffolds including spirotetronate antibiotics, ansamycins, and orthosomycins.13-15 One 

of the first reported deoxynitrosugar-containing natural products is the orthosomycin 

antibiotic everninomicin from Micromonospora carbonacea var. africana which includes 

a deoxynitrosugar moiety, evernitrose.15  This nitrosugar is called D-rubranitrose in the 

polyketide rubradirin isolated from Streptomyces achromogenes and is structurally 

related to D-kijanose from the spirotetronate polyketide antibiotic kijanimycin produced 

by the Actinomycete Actinomadura kijaniata.14, 19  These compounds possess potent 

antibacterial activity among other important biological activities. Below is a brief 

description of these three important nitrosugar-containing natural products with 

emphasis on the significance of their attached nitrosugar moiety. 
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Everninomicin 

Everninomicin, producd by Micromonospora  carbonacea var. africana, is an 

oligosaccharide which belongs to the orthosomycin class of antibiotics and possesses 

potent activity against Gram-positive and Gram-negative bacteria including vancomycin 

resistant enterococci, methicillin resistant staphylococci, and penicillin-resistant 

streptococci.20 The structure of everninomicin is composed of eight deoxysugars 

including a terminal nitrosugar (L-evernitrose), and acelytated with orsellinic and 

dichloroisoeverninic acid moieties (Figure I-2). 

 

 

Figure I-2. Chemical structure of everninomicin. 

 

The mechanism of action of everninomicin involves inhibition of protein 

biosynthesis by binding to the ribosomal protein L16 which affects the function of the 

50S ribosomal subunit.21 Everninomicin was developed through phase III clinical studies 

when its further development was discontinued in May of 2000 for the stated reason: 

άǘƘŜ balance between efficacy and safety did not justify further development of the 

productέ.22 However, because of its potent antibacterial activity, researchers have been 
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interested in its structure diversification to create a number of everninomicin 

derivatives for structure-activity studies. Only limited chemical derivatization 

experiments of everninomicin were performed for that purpose, which proved 

challenging perhaps because of the complexity of the sugar linkages in orthosomycins.23 

This gave rise to the interest of studying the biosynthesis of everninomicin which could 

potentially lead to the utilization of the natural biocatalysts in its biosynthetic pathway 

to compliment the chemical synthetic methods in the rational drug design process. 

The deoxynitrosugar moiety in everninomicin was shown to be important for the 

antibacterial activity. For instance, antibacterial activity of the nitrosugar congener 

against Staphylococcus aureus was shown to be 125 fold higher compared to  that of the 

amino-sugar congener.16 This highlights the significance of studying the enzymes 

responsible for the N-oxidation of this important deoxysugar moiety. The knowledge 

that can be gained from understanding this important biochemical transformation could 

greatly impact current efforts towards everninomicin structure diversification. 

 

Rubradirin 

Rubradirin, produced by Streptomyces achromogenes var. rubradiris, is an 

ansamycin antibiotic that possesses significant activity against Gram-positive bacteria 

including multidrug-resistance strains of Staphylococcus aureus.19 The structure of 

rubradirin is comprised of four distinct moieties; the polyketide scaffold rubransarol, 3-

amino-4-hydroxy-7-methoxycoumarin (AMC), the aromatic bridge 3,4-
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dihydroxydipicolinate (DHDP), and the nitrosugar D-rubranitrose (2,3,6-trideoxy-3-C-4-O-

dimethyl- 3-C-nitro-D-xylo-hexose), (Figure I-3). 

 

 

Figure I-3. Chemical structure of rubradirin. 

 

The antibacterial activity of rubradirin involves inhibition of the function of 

microbial ribosomes by selective prevention of translation chain initiation during protein 

synthesis. 24 It has also been shown that the aglycone of rubradirin is a potent inhibitor 

of the human immunodeficiency virus (HIV) reverse transcriptase.25 The polyketide 

scaffold rubransarol does not inhibit bacterial RNA polymerase or ribosomal functions 

on its own, which highlights the importance of the additional structural elements in 

rubradirin including the deoxynitrosugar moiety. 

The gene cluster of rubradirin has been recently sequenced and deposited in the 

NCBI gene data bank. Functional analysis of this cluster based on sequence homologies, 

identified the genes responsible for the biosynthesis of the aminosugar precursor of the 
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nitrosugar D-rubranitrose.13 The lack of a gene that encodes a C-5 epimerase in the 

rubradirin gene cluster is consistent with the D-configuration of the nitrosugar moiety.  

Additionally, a putative oxidase gene, rubN8, was also found in the rubradirin gene 

cluster and proposed to perform N-oxidation of an aminosugar precursor in the 

biosynthesis of D-rubranitrose. 

It is worth noting that only the nitroso congener of rubradrin (protorubradirin) 

was isolated from the fermentation of the producer Streptomyces achromogenes var. 

rubradiris when it was grown in complete darkness. After isolation, protorubradirin 

readily converted to rubradin upon exposure to ambient light.  Based on this 

observation, it was proposed that the nitroso congener of rubradirin is the true 

secondary metabolite and that the nitro group is formed through photooxidation.26 

 

Kijanimicin 

Kijanimicin, produced by Actinomadura kijaniata, is a spirotetronate antibiotic 

and exhibits a broad range of antibacterial activity against Gram-positive bacteria, 

anaerobes, and the malaria parasite Plasmodium falciparum.14 It has also been shown 

that derivatives of kijanimicin possess potent activity against human liver and breast 

cancer cell lines.27 The structure of kijanimicin includes a pentacyclic polyketide core, 

linked to four L-digitoxose units and the nitrosugar, 2,3,4,6-tetradeoxy-4-

(methylcarbamyl)-3-C-methyl-3-nitro-D-xylo hexopyranose known as D-kijanose (Figure I-

4). Kijanimicin derivatives are also known to be produced by other high-GC Gram-
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positive bacterial strains (actinomycetes) such as Streptomyces, Micromonospora, 

Actinomadura, Saccharothrix, and Verrucosispora.14 Most members of this class of 

compounds exhibit antibacterial and antitumor activities and many possess other 

biological activities. Examples of these compounds include tetrocarcins and arisostatins, 

which have been shown to be inducers of apoptosis;28 chlorothricins, as 

anticholesterolemic agents;29 tetronothiodin, a cholecystokinin B (CCK-B) inhibitor;30 

MM46115, an antiviral drug active against parainfluenzae virus 1 and virus 2.31 

 

 

Figure I-4. Chemical structure of kijanimicin. 

 

The deoxysugar moieties that decorate the polyketide core of kijanimicin play an 

important role in the biological activity of this compound. Although no structure-activity 

studies yet assed the importance of the D-kijanose sugar, it is likely that this unusually 

modified deoxynitrosugar is important for biological activity. 
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Biosynthesis of deoxyaminosugars 

Deoxyaminosuagrs are an important class of deoxysugar moieties biosynthesized 

by a variety of organisms such as plants, fungi and bacteria.32 Based on gene functional 

analysis of several natural products possessing N-oxidized deoxysugars, it is largely 

thought that the precursors of these important moieties are deoxyaminosugars. 

Therefore, understanding the biosynthetic pathways of these sugar precursors is very 

helpful in the elucidation of the N-oxidation pathway. Before the introduction of the 

amine group, the precursor sugar must be in its deoxygenated form. Enzymatic 

deoxysugar modifications are always carried out on nucleotide activated sugars such as 

thymidine diphosphate (TDP)-sugars. All known TDP-sugars are derived from glucose-1-

phosphate which is converted to TDP-glucose by a thymidilyl transferase and then to 

TDP-4-keto-6-deoxy-D-glucose by TDP-D-glucose 4,6-dehydratase (Scheme I-1). This 

provides the entry point for further deoxygenation and other enzymatic modification 

steps including transamination.3 

 

 

Scheme  I-1. Entry point into TDP-deoxysugar secondary metabolism in bacteria. 

 

Deoxyaminosugars are produced from their deoxygenated ketosugar precursors 

via a transamination reaction carried out by a transaminase or an aminotransferase 
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which substitutes the keto group with an amino group. These enzymes are usually 

dependent on pyridoxal phosphate (PLP), a cofactor that reacts with glutamate, which 

transfers its h -amino group to PLP to make pyridoxamine phosphate (PMP). PMP then 

transfers its nitrogen to the sugar, forming an aminosugar.33 Aminotransferase catalysis 

proceeds via a highly conserved mechanism typically yielding regio- and 

enantioselective amine installation.34 

The structure of DesI, an aminotransferase involved in D-desosamine 

biosynthesis in Streptomyces venezuelae,  in the presence of PLP and the aminosugar 

product revealed an external aldimine intermediate in which a lysine residue is in close 

proximity to both C-пΩ ƻŦ t[t and the C-4 atom of the sugar substrate.35  This residue 

likely plays a role in mediating the proton transfers that occurs during the 

transamination yielding a C-4 equatorial amine installation.  Unlike DesI, PseC another C-

4 aminotransferase from Helicobacter pylori, introduces a C-4 axial amino group into a 

4-ketosugar.36 Interestingly, the hexose moiety was found to be rotated by 180° in PseC 

compared to DesI resulting in this interesting opposite stereochemistry of the amino 

group. 

 

Biosynthesis of TDP-L-epi-vancosamine 

The biosynthesis of TDP-L-epivancosamine (Scheme I-2) is a good example to 

discuss because this unusual moiety is one of the most modified deoxyaminosgurs 

found in natural products. Eight enzymatic steps are required for its biosynthesis 



 
 

13 
 

starting from glucose. There are two L-epivancosamine sugars linked to the aglycone 

scaffold in chloroeremomycin, a member of the vancomycin family of glycopeptide 

antibiotics produced by Amycolatopsis orientalis.37 The biosynthetic gene cluster of 

chloroeremomycin has been sequenced which facilitated the in vitro studies of TDP-L-

epivancosamine bisosynthesis.38  In these studies, five enzymes from the 

chloroeremomycin pathway, EvaA-E, have been shown to be involved in its biosynthesis 

starting from TDP-6-deoxy-4-keto-D-glucose.39 These five enzymes were shown to 

perform C-2 deoxygenation by EvaA, C-3 amination and methylation by EvaB and EvaC 

respectively, C-5 epimerization by EvaD, and C-4 ketoreduction by EvaE (Scheme I-2). 

To reconstitute the biosynthesis of TDP-L-epivancosamine in vitro, the TDP-

glucose 4,6-dehydratse (RfbB) from the rhamnose biosynthetic pathway, was used to 

generate the entry sugar TDP-4-keto-6-deoxy- -hD-glucose.40 The RfbB activity requires 

nicotinamide adenine dinucleotide phosphate (NADP+) which is bound to the enzyme. It 

was shown that the dehydration by EvaA, 2,3-dehydratase, produces the unstable TDP-

linked 3,4-dioxo-6-deoxy sugar which is susceptible to TDP elimination with 1,2-olefin 

formation.39 The 3-amino group is formed upon the activity of the aminotransferase, 

EvaB, a PLP dependent enzyme. It was also shown that the activity of this enzyme is 

enhanced by the inclusion of 1 mM glutamine in the assay. The C-3 methylation step is 

carried out by the activity of EvaC, a SAM dependent methyltransferase. This 

methylation is followed by the activity of the C-5 epimerase EvaD which results in a 

change of the sugar configuration from D to L. The final step of TDP-L-epivancosamine 

biosynthesis is the activity of the NADPH-dependent C-4 ketoreductase, EvaE, which 



 
 

14 
 

reduces the keto group on C-4 to a hydroxyl group. TDP-L-epivancosamine is then 

attached to the aglycone scaffold of chloroeromomycin by a glycosyltransferase. 

 

 

 Scheme I-2. Biosynthesis of TDP-L-epi-vancosamine. 

 

Comparative genomics of the nitro sugar functionality 

The availability of gene cluster data of many isolated natural products provided 

the opportunity to analyze genes based on sequence and propose functions prior to 

carrying out biochemical characterization of the encoded enzymes. Sequence based 

analysis alone is insufficient for identifying/discovering a precise biosynthetic gene 

especially for large gene clusters that may contain up to 100 genes. However, multiple 

gene clusters of related compounds can be analyzed via a comparative genomic 

approach which can substantially simplify identifying genes of interest. Comparative 

genomic analysis41 was performed on the related orthosomycins everninomicin and 

avilamycin which is described below.42 
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Avilamicin is another orothosomycin oligosaccharide structurally very similar to 

everninomicin but lacks the nitrosugar moiety (Figure I-5).43 It is produced by 

Streptomyces viridochromogenes and consists of heptasaccharide deoxysugar chain and 

one PKS-derived dichloroisoeveninic acid moiety. Another structural difference between 

the two oligosaccharides is the presence of the orsellenic acid moiety at C5 of the 

deoxysugar ring H of everninomicin which is replaced by an acetyl group in avilamycin. 

Like everninomicin, avilamycin was shown to be active against many Gram-

positive bacteria, including emerging problem organisms, such as vancomycin-resistant 

enterococci, methicillin-resistant staphylococci, and penicillin-resistant pneumococci. 

The mode of action of avilamycin is similar to that of everninomicin, which involves 

inhibition of protein biosynthesis by binding to the 50S ribosomal subunit of the 

bacterial ribosomes.44 

 

 

 Figure I-5: Chemical structures of everninomicin and avilamycin. 
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There are two gene clusters described for avilamicin in the public domain (AVIL, 

AVIA) and two for everninomicin (EVER, EVEA) representing four different producers. By 

comparing these four clusters and applying simple subtractive analysis, genes that are 

likely to be involved in the nitrosugar biosynthesis could be proposed. This approach led 

to the identification of nine candidate genes for the nitrosugar biosynthesis present in 

the two everninomicin producers; Micromonospora carbonacae var. aurantiaca and 

Micromonospora carbonacea var. africana, while absent in the two avilamycin 

producers; Streptomyces viridochromogenes and Streptomyces mobaraensis (Table I-

1).45 

 

Table I-1. Possible biosynthetic genes for L-evernitrose.  Nine genes present in the everninomicin gene 
clusters (EVEA and EVER) but absent in the avilamycin gene clusters (AVIL, AVIA). Orf36/42 gene pair 
(shown in red) from EVEA, EVER clusters, respectively, is the likely N-oxidase in the biosynthesis of the 
nitrosugar moiety. 

EVEA genes EVER genes Putative encoded enzymes 

Orf37 Orf43 (C3 aminotransferase) 

Orf40 Orf46 (C4 ketoreductase) 

Orf39 Orf45 (C5 epimerase) 

Orf38 Orf44 (C3 methytransferase) 

Orf35 Orf21 (glycosyltransferase) 

Orf36 Orf42 (flavin-dependent oxidase) 

Orf19 Orf4 (copper-dependent oxidase) 

Orf18 Orf3 (RNA methyltransferase) 

Orf41 Orf47 (C4 O-methlytransferase) 
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Sequence homology analysis of these genes, allowed the identification of five 

encoded enzymes involved in the biosynthesis of the aminosugar precursor that shared 

high sequence similarity and identity with their counterparts in the well characterized 

TDP-L-epivancosamineΩǎ biosynthetic pathway.39 The nitrosugar L-evernitrose is 

structurally very similar to TDP-L-epivancosamine with the difference being the N-

oxidation on C-3 and the C4 O-methylation in L-evernitrose. Among the genes shared 

between the two pathways were genes that encode a C-3-aminotransferase, C-3 

methyltransferase, C-5-epimerase and C-4-ketoreductase. The orf35/21 gene pair was 

found to share sequence homology with genes encoding glycosyltransferases and hence 

is possibly responsible for the glycoslation of L-evernitrose. The orf41/47 gene pair 

shares sequence homology with C4 O-methyltransferases likely responsible for 

introducing the methoxy group at C4 of the nitrosugar, a functionality that is replaced 

with a hydroxyl in TDP-L-epivancosamine.  The sequence homology analyses excluded 

two of these nine genes as candidates for the biosynthesis of evernitrose. Namely, the 

orf18/3 gene pair which has reasonable homology to RNA-methyltransferase genes and 

the Orf19/4 gene pair homologous to copper-dependent oxidase genes involved in 

primary metabolism. The only remaining and likely oxidase responsible for the oxidation 

of the aminosugar among these nine gene pairs is orf36/42. The encoded proteins of 

these genes have moderate sequence homology with the flavin dependent 

monooxygenase dibenzothiophene oxidase DszC which has been shown to oxidize a 

sulfide group to a sulfone via a sulfoxide intermediate.46 ORF36 also shares moderate 

sequence similarity (~ 25%) with the acyl-CoA dehydrogenase family of enzymes. Acyl-
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CoA dehydrogenases are flavin-dependent enzymes and are used as a structural model 

for class-D flavin-dependent monooxygenases. 

 

Proposed deoxysugar N-oxidation pathway 

As mentioned above, the oxidase proposed to form the nitrosugar congener 

from the deoxyaminosugar precursor in the everninomicin pathway is ORF36 from 

Micromonospora carbonacea var. africana. This putative flavin-dependent enzyme 

shares high sequence identity and similarity with other homologues in the biosynthetic 

pathways of nitrosugar-containing natural products such as RubN8 from the rubradirin 

pathway and KijD3 from the kijanimicin pathway.  All of these putative N-oxidases share 

moderate homology with the flavin-dependent dibenzothiophene oxidase DszC which 

oxidizes dibenzothiophene (DBT) to DBT sulfone (DBTO2) as shown in scheme I-3. This 

two-step oxidation requires the flavin mononucleotide (FMN) and the NADPH cofactors 

as well as an external flavin reductase to provide reduced flavin which mediates the 

monooxygenation catalysis. Reduced flavin is known to react with molecular oxygen to 

form the C4a-hydroperoxyflavin, a reactive oxygen species that is responsible for the 

electrophilic oxidation of the substrate.47 The oxygenation step results in the 

incorporation of one oxygen atom into the substrate, usually as a hydroxyl group, and 

the formation of the C4a-hydroxyflavin. The hydroxyflavin readily loses a water 

molecule and is recycled to participate in further rounds of oxidations. 
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Schem I-3. Oxidation of dibenzothiophene by DszC. 

 

The oxidation mechanism for the aminosugars by the putative flavin-dependent 

oxidases could be envisioned in a similar manner whereby the reduced flavin is provided 

by the function of an external flavin reductase. Monooxygenation mediated by C4a-

hydroperoxyflavin results in the formation of a hydroxylamine intermediate and 

consequently, similar flavin-dependent oxidation steps result in the production of 

further oxidized intermediates perhaps via the nitroso and ultimately the nitro 

functionality. 

 

Anthracyclines and deoxyaminosugar oxidation 

 

A brief history of anthracycline drugs 

Anthracyclines are another class of natural products with deoxysugar moieties 

attached to their tetracyclic polyketide cores. Some anthracycline compounds are 

considered the most effective anticancer drugs and possess a wide range of activity 

against several types of human cancers.48-50 The first discovered anthracyclines were 

doxorubicin and daunorubicin when they were isolated from Streptomyces peucetius in 

early 1960s.5, 51 The tetracyclic structure of doxorubicin and daunorubicin includes 

quinone-hydroquinone groups represented by rings C-B (Figure I-6). The sugar moiety in 
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these two compounds is 3-amino-2,3,6-trideoxy-L-fucose, also known as daunosamine. 

Doxorubicin and daunorubicin share the same tetracyclic core with the difference of a 

hydroxyl group on C-13 in doxorubicin. This small structural difference has significant 

effect on the spectrum of the anticancer activity of doxorubicin vs. daunarubicin. For 

example doxorubicin and some of its analogs were found to have less acute toxicity, 

cause less cardiomyopathy, and in general more potent anticancer activity.52 

Additionally, daunorubicin shows activity in acute lymphoblastic or myeloblastic 

leukemias53 whereas doxorubicin is more active against breast cancer, childhood solid 

tumors, soft tissue sarcomas, and aggressive lymphomas.54 

 

 

Figure I-6. Chemical structure of some anthracyclines. 

 

The use of doxorubicin and daunorubicin in clinic is facing some challenges such 

as the development of resistance in tumor cells or toxicity in healthy tissues, resulting in 
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some cases in chronic cardiomyopathy and congestive heart failure (CHF) among other 

side effects. Therefore, there is a need for improved anthracycline analogs with varied 

pharmacokinetics for the treatment of different types of cancer. Hundreds of new 

doxorubicin and daunorubicin analogs were synthesized but only few of them made it to 

clinical development and approval.52 Among the best approved analogues were 

epirubicin55-58 and idarubicin59-61, alternatives to doxorubicin and daunorubicin, 

respectively. The only difference between epirubicin and doxorubicin is the 

epimerization at C-пΩ ƻŦ ŘŀǳƴƻǎŀƳƛƴŜ ŎƘŀƴƎƛƴƎ ǘƘŜ ƻǊƛŜƴǘŀǘƛƻƴ ƻŦ the hydroxyl from the 

axial in doxorubicin to the equatorial in epirubicin. Interestingly, this minor structural 

difference resulted in significant changes in the pharmacokinetic properties which led to 

improvements in distribution volume and total body clearance.53 The idarubicin 

analogue of daunorubicin is made from the removal of the 4-methoxy group in ring-D 

and was shown to possess broader spectrum of anticancer activity. It was speculated 

that this improved activity may be attributed to increased lipophilicty and stabilization 

of the drug-topoisomerase-DNA ternary complex.62 Other approved anthracyclin 

analogues include pirarubicin, aclacinomycin A (aclarubicin), 63-64 and mitoxantrone65-67 

(a substituted aglyconic anthraquinone). 

 

Biosynthesis of baumycin 

Baumycin is an another anthracycline compound derived from daunorubicin and 

has been shown to exhibit high efficacy against gram-positive bacteria and certain 

cancer cell lines such as leukemia cells (L1210). The structure of baumycin includes a 
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non-sugar acetal moiety attached at C-пΩ Ǉƻǎƛǘƛƻƴ ƻŦ ǘhe daunosamine sugar (Figure I-

6).68-71 

In Streptomyces peucetius, the polyketide core in baumycin is produced by a 

Type II polyketide synthase (PKS). The first 3-carbons of the 21-carbon decaketide chain 

are synthesized from the incorporation of a single propinyl starter unit from propinyl-

CoA followed be 9 iterative condensations of malonyl extender units.72 The minimal PKS 

proteins that catalyze the formation of this long chain polyketide are an acyl carrier 

protein (ACP), ketosynthase (KS) and a malonyl-CoA:ACP acyltransferase (MAT).73 The 

polyketide chain is converted to 12-deoxyalkalonic acid catalyzed by the dps gene 

cluster which includes DpsE, an NADPH dependent 9-ketoreductase, and cyclases DpsF 

and DpsY that catalyze the formation of ring D and C, respectively. The subsequent 

polyketide modifications are catalyzed by the dnr gene cluster which includes C-12 

oxygenase, a SAM dependent alkalonic acid methyltransferase, ring A cyclase, C-7 

ketoreductase, and a C-11 hydroxylase.74 This series of polyketide modifications yields ₵- 

rhodomycinone (Figure I-6), the precursor for doxorubicin and daunorubicin. The 

daunosamine sugar is then attached by DnrS, a glycosyltransferase followed by 

additional modifications on the tetracyclic core to yield daunorubicin75, which is a 

precursor for doxorubicin and baumycin. The biosynthesis of the actal moiety at C-пΩ 

position of the daunosamine sugar is unclear; however, based on gene cluster analysis; 

a possible pathway is proposed and discussed below. 
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Deoxysugar genes in anthracyclines 

The biosynthetic genes of the deoxysugar L-danosamine in doxorubicin, 

daunorubicin and baumycin were assigned based on sequence homologies with other 

sugar modifying enzymes and further studied by gene manipulation. It was shown that 

the minimal enzymes required for L-daunosamine biosynthesis and attachment are 

encoded by the dnmLMJVUTS genes.76 These genes were cloned into the heterologous 

host Streptomyces lividans and the resultant recombinant strain was fed with the 

aglycone ₵-rhodomycinone. Scheme I-4 illustrates the enzymatic steps required for the 

biosynthesis of TDP-L-daunosamine starting from D-glucose-1-phosphate. The DnmL 

enzyme is highly homologous to the well-known glucose-1-phosphate 

thymidylyltransferases which catalyze the conversion of D-glucose-1-phosphate into 

TDP-D-glucose.77 This sugar is converted to TDP-6-deoxy-4-keto-D-glucose catalyzed by 

DnmM, a TDP-D-glucose 4,6-dehydratase. The 4-keto sugar is then further dehydrated 

by DnmT, a 2,3-dehydratase to yield the 3,4-dioxo-6-deoxysugar nucleotide which can 

be transaminated by DnmJ, a C-3 aminotransferase. At this stage, the sugar can undergo 

epimerization by DnmU, a C-5 epimerase resulting in configuration change from D- to L-

deoxysugar. The last sugar modification before glycoslation appears to be catalyzed by 

DnmV, a 4-ketoreductase, which yields the TDP-L-daunosamine, the sugar donor 

substrate of DnmS, a glycosyltransferase. It was also shown that the aglycon of DnmS is 

₵-rhodomycinone, a precursor for the anthracyclines doxorubicin and daunorubicin. 
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Scheme I-4: biosynthesis of TDP-L-daunosamine. 

 

Further analysis of the Streptomyces peucetius anthracycline gene cluster reveals 

the presence of additional sugar modifying/attachment enzymes. These enzymes 

include DnrH, a glycosyltransferase, and DnmZ, a flavoprotein homologous to ORF36 

from the everninomicin pathway. The deoxysugar gene dnrx which encodes a C3 SAM-

dependent methyltransferase was also found in the cluster. The C3-methyltransferase is 

not required for the biosynthesis of L-daunosamine because this sugar lacks C3 

methylation. Interestingly, DnrX shares high sequence similarity with the C3 

methyltransferase, ORF38, from the putative deoxynitrosugar L-evernitroseΩǎ pathway 

(66% identity, 76% similarity). DnrX is also homologous to EvaC from the TDP-L-

epivancosamine pathway (66% identity, 78% similarity). 

The presence of these extra deoxysugar genes suggests that their encoded 

enzymes catalyze sugar modification/attachment steps for a second deoxysugar. To 

date, no anthracycline compound with two deoxysugar appendages has been isolated 

from the anthracycline producer Streptomyces peucetius, which gives rise to the 

importance of elucidating the biosynthetic route of the non-sugar acetal moiety in 
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baumycin. One possibility could be that the formation of this unusual moiety is a result 

of terminal deoxysugar degradation whereby the sugar undergoes a C-C bond cleavage, 

perhaps combined with other chemical/enzymatic steps. To resolve this intriguing 

mystery, it is essential to biochemically confirm the putative roles of these additional 

deoxysugar enzymes. The glycosyltransferase DnrH and the C-4 ketoreductase DnrX 

have well known and characterized homologues in other deoxysugar pathways hence, 

their characterization seems less attractive. Elucidation of the function of the putative 

flavin-dependent enzyme DnmZ however, seems more interesting considering its 

homology to ORF36, RubN8, and KijD3 proposed to be involved in deoxyaminosugar 

oxidation. 

 

The putative role of the flavoenzyme DnmZ 

As mentioned above, DnmZ shares high sequence homology with the proposed 

flavin-dependent enzymes ORF36, RubN8 and KijD3 proposed to be involved in 

deoxyaminosugar oxidation. For example, DnmZ shares 70% sequence similarity with 

ORF36 (59% Identity). This suggests that all of these enzymes likely catalyze a similar 

deoxyaminosugar oxidation reaction. Given the fact that there are no deoxysugar 

moieties with N-oxidation in any of the anthracycline derivatives produced by 

Streptomyces peucetius isolated to date, proposing a role for DnmZ seems difficult; 

however, one scenario can be envisioned whereby DnmZ catalyzes a deoxyaminosugar 

oxidation similar to that proposed for its homologues, whereby the resulting sugar 
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moiety undergoes further enzymatic or chemical transformations either before or after 

glycoslation. 

The biosynthetic origin of the terminal non-sugar acetal moiety in baumycin is 

unclear but one possible route for its formation is through enzymatic or chemical 

modifications of a deoxysugar precursor. The presence of extra sugar genes in the 

anthracycline gene cluster of Streptomyces peucetius supports this hypothesis.78 The C-3 

methyltransferase DnrX is likely involved in the production of the TDP-deoxyaminosugar 

substrate of the putative DnmZ enzyme. One pathway of this substrate could be 

proposed in which the DnrX activity follows the transamination by DnmJ forming the C-3 

methylated sugar. This methylation step provides a diversion from the L-daunosamine 

pathway and maybe a key requirement for subsequent deoxyaminosugar oxidation 

activity. This is consistent with the methylation at C-3 in the deoxynitrosugars L-

evernitrose, D-rubranose, and L-kijanose.13-14, 42 The subsequent steps to produce the 

DnmZ substrate could be carried out by the C-5 epimerase DnmU and a C-4 

ketoreductase yielding TDP-L-epivancosamine, a substrate precursor proposed for the 

ORF36 homologue. Amine oxidation of this sugar by DnmZ could set the stage for other 

enzymatic or chemical transformations to ultimately form baumycin (Scheme I-5) 

 



 
 

27 
 

 

SchemI-5. Proposed pathway of late-step baumycin biosynthesis including the role of DnmZ. 

 

Flavoprotein monooxygenases 

As discussed earlier and based on sequence homologies, the enzyme responsible 

for the formation of the nitro functionality in nitrosugar-containing natural products is 

likely a flavin-dependent monooxygenase. Enzymes of this family are capable of efficient 

and specific insertion of one or more oxygen atoms into an organic substrate, a reaction 

not easy to perform via traditional chemical syntheses.79 Although many chemical 

catalysts have been designed to address the difficulty of oxygenation reactions, the 

exquisite specificity and efficiency of monooxygenases remain unmatched. The 

discovery and characterization of a new flavin-dependent monooxygenase, will extend 

our knowledge of important biosynthetic pathways, support the current efforts of 

natural product structure diversification, as well as introduce new efficient biocatalysts 
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to perform difficult oxygenation reactions. Below is a brief background on flavoproteins 

with emphasis on flavin-dependent monooxygenases. 

 

Biochemistry of flavoproteins 

Flavin exists in nature in three principle forms; riboflavin (vitamin B2), flavin 

mononucleotide (FMN), and flavin adenine dinucleotide (FAD) as shown in figure I-7.80 

The FMN and FAD forms are the prosthetic groups for flavoproteins, and there are well 

characterized mechanisms for their interconversions. Flavins have bright yellow color, 

like most flavoproteins, and a characteristic UV-absorption that changes significantly 

depending on the oxidation state of the flavin. This unique spectrophotpmetric property 

allowed the study of the catalysis of many flavoproteins. Flavins undergo one electron 

reduction to give stable semiquinone radicals allowing them to mediate between the 

common two electron oxidations (e.g NAD(P)+/NAD(P)H) and one electron oxidations 

carried out by heme or iron-sulfur cluster proteins. 
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Figure I-7. Chemical structures of several flavin species. 

 

In free solution, a mixture of oxidized and reduced flavin exists in an equilibrium 

in which a certain amount of radical is formed. At pH 7, only about 5% flavin 

semiquinone radical is stabilized for a 1:1 mixture of oxidized and reduced flavin. The 

semiquinone radical can exist in a neutral or anionic form (Figure I-7). Binding to the 

enzyme can provide up to 100% semiquinone radical stabilization. For the flavin-

dependent oxidases, the bound reduced anionic flavin reacts with molecular oxygen to 

yield a caged radical pair of neutral flavin radical and superoxide (Scheme I-6). This 

radical pair can react in several pathways. The two radicals can collapse to form the C4a 

hydroperoxide anion which upon protonation forms the electrophilic C4a- 

hydroperoxide, a species that is involved in hydroxylation reactions. The peroxide 

species can undergo hydroperoxide elimination to regenerate oxidized flavin. Oxidized 

flavin can also be formed via a second one-electron transfer from the radical pair. A 

third route of the radical pair is the dissociation to its free components, flavin radical 
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and superoxide. In the oxygenation mechanism, the C4a-hydroperoxide can act as an 

electrophile such as in aromatic hydroxylations81, or when deprotonated, as a 

nucleophile such as in Baeyer-Villiger monooxygenases.82 

 

 

Scheme I-6. General mechanism of oxygenation reactions catalyzed by external flavoprotein 
monooxygenases. 

 

The monooxygenase family 

Besides flavoprotein monooxygenases, a number of other different types of 

enzymes have evolved in nature to carry out monooxygenation reactions. The 

cytochrome P450 family of monooxygenases is one of the best characterized 

monooxygenases. These are heme-containing enzymes and occur in relatively abundant 

isoforms. The catalytic mechanism of P450 monooxygenases is tightly coupled to 

substrate binding.80  Upon binding of the substrate, the heme cofactor can be reduced 

by gaining electrons from reduced flavin. The flavin is typicaly reduced by an external 

flavin reductase that accepts electrons form the NADPH coenzyme. The reduced heme is 
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then used to complete the monooxygenation of the substrate. Cytochrome P450 

monooxygenases are cabaple of hydroxylating carbon atoms regioselectively, which has 

been shown to be of great value to modify sterols and steroids. 

Other classes of monooxygenases include non-heme monooxygenases83 and 

copper-dependent monooxygenases.84 A few new types of monooxygenases have been 

discovered in recent years that do not contain the aforementioned cofactors including 

the polyketide monooxygenase ActVA-Orf6, involved in actinorhodin biosynthesis in 

Streptomyces coelicolor.81  Another example is the quinol monooxygenase YgiN, from 

Escherichia coli which oxidizes multiringed aromatic substrates without the participation 

of any cofactor.85 Aclacinomycin-10-hydroxylase, involved in anthracycline biosynthesis 

in Streptomyces purpurascens, is another rare type of monooxygenases as it depends on 

S-adenosyl-l-methionine as a cofactor.86 Flavin-dependent monooxygenases are perhaps 

the most ubiquitous of monooxygenases. They perform a wide range of 

monooxygenation reactions with high regio- and/or enantioselectivity. A brief 

background on flavin-dependent monooxygenases is disussed below. 

 

Flavoprotein monooxygenase catalysis 

Flavoprotein monooxygenases are a broad group of enzymes which share similar 

properties and mechanistic features.87 One common property of these enzymes is the 

use of NADH or NADPH to supply the reduced flavin which reacts with molecular oxygen 

to form C4a-peroxide required for oxygenation of the substrate. When protonated, the 

C4a-peroxide is a potent electrophile and can participate in hydroxylation reactions such 
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as aromatic hydroxylations.81 The flavin peroxide anion can also react as a nucleophile 

and is employed by a second subgroup of monooxygenases an example of which is 

cyclohexanone monooxygenase.88 These two subgroups of monooxygenases share 

common but distinctive properties. In most electrophilic monooxygenases, there is an 

exquisite control mechanism to ensure that the NAD(P)H cofactor is only used when the 

substrate is bound to the enzyme for oxygenation.80 Substrate binding is required for 

rapid reduction of flavin by NAD(P)H. For the nucleophilic monooxygenases, substrate 

binding is usually not required for flavin reduction but the C4a-peroxide formed upon 

reaction with O2 stabilized by the protein is only reactive in the presence of the 

substrate for oxygen transfer.89 In contrary, the C4a-hydroperoxide in electrophilic 

monooxygenases is very unstable in the absence of the substrate. 

One of the most well studied electrophilic monoxygenases is p-hydroxybenzoate 

hydroxylase and its basic mechanism appears to be followed by most members of this 

class.90 These enzymes can be studied spectrophotometrically exploiting the flavin 

absorbance and fluorescence properties.91 The mechanism of p-hydroxybenzoate 

hydroxylase monooxygenation starts with forming the flavin-NADPH-substrate ternary 

complex resulting in a long-wavelength-absorbing charge transfer between the NADPH 

as a donor and oxidized flavin as an acceptor (Scheme I-7). The next step is the 

reduction of the flavin cofactor which is also accompanied by significant change in 

absorbance and fluorescence causing another long wavelength charge transfer in which 

reduced flavin is the donor and NADP+ is the acceptor. The NADP+ species is then 

released forming the enzyme-reduced flavin-substrate complex. The resulting anionic 
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reduced flavin can then react with molecular oxygen forming the enzyme-C4a-

hydroperoxide-substrate intermediate complex. This intermediate has distinctive 

spectrum with a wavelength maximum at 380 nm which is formed with a pseudo first 

order constant directly proportional to the oxygen concentration. Oxygen transfer from 

the hydroperoxyflavin can then take place resulting in a complex of enzyme C4a-

hydroxyflavin and the non-aromatic metastable dienone (intermediate III). The following 

step is the re-aromatization to form intermediate III that includes the more stable 

hydroxylated product, a step that occurs at sufficiently slow rate that allows the 

determination of K6. The final step is the dehydration of the C4a-hydroxyflavin to recycle 

the oxidized enzyme ready for the next round of catalysis. 
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Scheme I-7 . Reaction mechanism of p-hydroxybenzoate monooxygenase. 

 

For p-hydroxybenzoate hydroxylase, it has been found that the flavin exisits in 

two different conformations: one is mostly buried in the protein core and ideally 

positioned for hydroxylation and the other is partially solvent exposed and suitable for 

reduction by NADPH.92 The mobility of the flavin cofactor has been also confirmed in the 

structural studies of the related phenol hydroxylase.93 

In nucleophilic monooxygenation, O2 reacts with reduced flavin to form the 

flavin peroxide. This is the nucleophilic flavin-oxygen intermediate that participates in 

the oxygen transfer to the substrate as in Baeyer-Villiger monooxygenases.82, 94 In 

cyclohexanone monooxygenase, the flavin C4a-peroxide formed after the reaction of 

reduced flavin with molecular oxygen can be slowly protonated to yield the C4a-

hydroperoxyflavin, or it can react with cyclohexanone as a nucleophile to form the 
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Criege intermediate which rearranges to form ₵-carbolactam.95 The resulting 

hydroxyflavin undergoes elimination of water regenerating the oxidized flavin for next 

cycle of catalysis.96-97 The NADP+ species must be bound during the reaction to protect 

the reactive C4a-hydroperoxide. 

 

Classifications of Flavoprotein monooxygenases 

Several hundred flavoenzymes have been characterized to date.98-99 Most of 

these enzymes contain a non-covalently bound flavin in the form of FMN or FAD but 

there are some enzymes that bind the flavin cofactor covalently. Examples of flavin 

covalently bound enzymes include vanillyl-alcohol oxidase which contains FAD bound to 

a histidine residue.100 In p-cresol methyl hydroxylase, the FAD is linked to a tyrosine 

residue. It has been shown that this covalent linkage is beneficial for catalysis in the case 

of vanillyl-alcohol oxidase.101 For all internal or external flavoprotein monooxygnases 

however, the flavin cofactor is not covalently linked to the enzyme. 

Classification of the big family of flavoenzymes has been established based on 

different criteria such as the types of reactions they catalyze, cofactor requirements, 

sequence homology and structural folds. More recently, external flavoprotein 

monooxygenases have been classified by following similar criteria mentioned above. 

They were divided into six different subclasses A-F as shown in table I-2. These 

subclasses were discriminated based on sequence similarty, specific structural motifs, 

types of reactions and cofactor requirements. Structures of some prototype flavin-

dependent monoxygenases are shown in figure I-8.79 
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Table I-2 classification of external flavoprotein monooxygenases.
79

 

Class Reactions Cofactor Coenzyme Structural fold 

A Hydroxylation, 
epoxidation 

FAD NAD(P)H 1 FAD/NAD(P)-binding domain 

B BaeyerςVilliger, 
N-oxidation 

FAD NADPH 2 FAD/NAD(P)-binding domains, 
1 helical domain 

C Light emission, S-
oxidation, 
BaeyerςVilliger 

 
ς 

FMN 
NAD(P)H 

 
TIM barrel 

D Hydroxylation  
ς 

FAD 
NAD(P)H 

Acyl-CoA dehydrogenase (model) 

E Epoxidation  
ς 

FAD 
NAD(P)H 

1 FAD/NAD(P)-binding domain 

 
F 

 
Halogenation 

 
ς 

 
FAD 
NAD(P)H 

1 FAD/NAD(P)-binding domain 
1 helical domain 
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Figure I-8.
79

 Structures of several prototype flavoprotein monooxygenases. The FAD cofactor is shown 
in sticks. (A) Class A: 4-hydroxybenzoate 3-monooxygenase from Pseudomonas fluorescence (B) Class B: 
phenylacetone monooxygenase from Thermobifida fusca   (C) Class C: alkanesulfonate monooxygenase 
from Escherichia coli (no FMN cofactor was crystallized with the enzyme). (D)  Class F: tryptophan 7-
halogenase from Pseudomonas fluorescens. 

 

Class A 

Enzymes of this subclass are encoded by a single gene and contain a tightly 

bound FAD cofactor. Reduction of the FAD cofactor depends on the NADH or NADPH 

coenzyme with immediate release of the NADP+ species after reduction. Class A 

flavoprotein monooxygenases are structurally composed of a dinucleotide binding 

domain adopting the Rossman fold102 for the binding of the FAD cofactor. 
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Class A flavoprotein monooxygenases are known to catalyze epioxidation 

reactions. Squalene monooxygenase, a well-known example, is a key enzyme in the 

commited pathway for cholesterol biosynthesis which catalyzes the epioxidation of 

squalene across a C-C double bond to yield oxidosqualene.103 The activity of this enzyme 

is dependent on NADPH-cytochrome p450 reductase for reducing equivalents. 

The recently characterized Baeyer-Villiger enzyme MtOIV represents an atypical 

class A monooxygenase. This enzyme catalyzes the key-frame modifying step in the 

biosynthesis of mithramycin, an anticancer drug and calcium lowering agent. MtOIV 

cleaves a carbon-carbon bond essential for the conversion of the biologically inactive 

premithramycin B into the active drug mithramycin.104 Unlike most members of this 

class, MtOIV uses a peroxyflavin intermediate as its oxygenating species instead of the 

electrophilic hydroperoxyflavin typically used in class A flavoprotein monooxygenases. 

Another flavoprotein epioxidase that belongs to this subclass is zeaxanthin epoxidase 

specific for carotenoids with 3-hydroxyl- -̡cyclohexenyl ring. This enzyme requires 

NADPH and ferrodoxin-like reductives for activity.105 

The crystal structures of enzymes of this subclass show motifs for the FAD 

ōƛƴŘƛƴƎ ǊŜƎƛƻƴ ǘƘŀǘ ǊŜǎŜƳōƭŜǎ ǘƘŜ ʲ- -hʲ όwƻǎǎƳŀƴ ŦƻƭŘύ ǘƘŀǘ ōƛƴŘǎ ǘƘŜ !5t ƳƻƛŜǘȅ ƻŦ 

FAD. There is no distinct domain for binding of the NADPH coenzyme consistent with its 

transient complex formation for the reduction of the flavin and rapid release as NADP+. 

Recent structural characterization of 4-hydroxybenzoate 3-monooxygenase (Figure I-8), 

a member of this subclass, showed an additional finger-print sequence containing a 
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highly conserved DG motif involved in binding of both pyrophosphate moieties of 

NADPH and FAD.106 

 

Class B 

Enzymes of class B flavoprotein monooxygenases are encoded by a single gene 

and bind tightly to the FAD cofactor. They commonly depend on the NADPH coenzyme 

as reducing equivalents and keep the NADPH/NADP+ species bound during catalysis. 

Their structure is composed of two dinucleotide binding domains adopting the Rossman 

fold for the binding of both FAD and NADPH. All members of this class are single 

component FAD-containing monooxygenases with specificity for NADPH. 

Class B flavoprotein monooxygenases are also called multifunctional 

monooxygenases because they are able to oxidize both carbon and hetero atoms. This 

class of enzymes can also be divided into three sequence related subfamilies: flavin-

containing monooxygenases107 (FMOs), microbial N-hydroxylating monooxygenases108 

(FNOs), and Baeyer-Villiger monooxygenases82 (type I BVMOs). 

Flavin-containing monooxygenases were originally named mixed function 

monooxygenases.109  They are known to play an important role in detoxification of drugs 

and foreign molecules in humans complementing the activities of cytochrome p450 

enzymes. This subclass catalyzes monooxygenation of carbon bond-reactive 

heteroatoms such as sulfur, nitrogen, phosphorous, selenium and iodine. 
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N-hydroxylating monooxygenases catalyze the N-hydroxylation of primary 

amines and hence, play an important role in the biosynthesis of bacterial siderophores. 

They have sequence homology with flavin-containing monooxygenases and require 

NADPH and FAD for activity. Unlike flavin-containing monooxygenases, N-hydroxylating 

monooxygenases show lower affinity for FAD which hindered mechanistic studies of 

their catalysis. Ornithine hydroxylase (PvdA) catalyzes the hydroxylation of the side 

chain primary amine of ornithine in the initial step of the biosynthesis of the 

Pseudomonas aeruginosa siderophore pyoverdin.108 Kinetic studies of this enzyme 

showed that binding of the substrate target is not required to trigger reduction of the 

flavin by NADPH.110 

Class B Bayer-Villiger monooxygenases (BVMOs), catalyze an atypical 

oxygenation reaction converting a ketone or an aldehyde to ester or lactone.111 One of 

the first studied enzymes of this family is cyclohexanone monooxygenase, from 

actinobacter sp. NCBBI 9871.112 This enzyme performs Baeyer-Villiger oxidations on a 

wide variety of cyclic ketones with exquisite regio- and enantioselectivity. Bayer-Villiger 

monooxygenases can be identified based on the presence of two Rossman fold domains 

for FAD and NADPH binding. It was shown that phenylacetone monooxygenase, a well-

characterized Baeyer-Villiger monooxygenase and member of this subfamily, has 

dinucleotide binding domains flanked by two helical domains which are unique for this 

type of monooxygenases.113 
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Class C 

This class belongs to multicomponent monooxygenases and commonly encoded 

by multiple genes for the monooxygenase and the reductase components. Class C 

flavoprotein monooxygenases use FMN as a cofactor which is reduced by the reductase 

component using NADPH or NADH for reducing equivalents. The general structural core 

for the monooxygenase component displays a TIM-barrel fold.114 

The most well-known examples of this class are bacterial lucifrases which are 

enzymes that emit light upon oxidation of long-chain aliphatic aldehydes.115 Luciferases 

contain two heterodimeric subunits; one is the oxygenase component and the other is 

used for the reductase activity. Other examples of this class include 2,5-diketocamphane 

1,2-monooxygenase, a type II Baeyer-Villiger monooxygenase.116 The oxygenase 

component of this enzyme consists of two subunits for FMN binding similar to 

luciferases. 

Another example is alkanesulfonate monooxygenase.117 Structural studies of this 

enzyme revealed that it has a TIM-barrel fold where the monooxygenation catalysis 

proceedes via the formation of an FMN-monooxygenase-reductase complex.118 One 

more example of this series is dibenzothiophene monooxygenase (DszC).119 This enzyme 

is involved in desulfunization of benziothiophenes. It was recently shown that DszC is 

able to utilize either FMNH(2) or FADH(2) when coupled with a flavin reductase that 

reduces either FMN or FAD.120 As discussed above, this enzyme shares moderate 
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homology with the flavin-dependent monooxygenase proposed to catalyze the 

oxidation of deoxyaminosugars. 

 

Class D 

This class of flavoprotein monooxygenases is typically encoded by two genes; 

one is for the monooxygenase and the other is for the flavin reductase component. The 

reductase component uses FAD as a cofactor and NADH or NADPH as a coenzyme. 

These enzymes are structurally homologous to acyl-CoA dehydrogenases and are mostly 

-hhelical proteins. 

Members of this class are typically active on regioselective hydroxylation of 

aromatic substrates. The prototype is 4-hydroxyphenylacetate 3-monooxygenase 

(Figure I-8) which catalyzes the conversion of 4-hydroxyphenylacetate to 3,4-

dihydroxyphenylacetate.121 The oxygenase component (HpaB) introduces a hydroxyl 

group into the benzene ring of 4-hydroxyphenylacetate using molecular oxygen and 

reduced flavin, while the reductase component (HpaC) provides free reduced flavins for 

HpaB.122-123 Another example is 2,4,6-trichlorophenol monooxygenase which catalyzes 

sequential dechlorinations by oxidative and hydrolytic reactions.124 The acyl-CoA 

dehydrogenase is a sequence related model for class D flavoprotein monooxygenases 

which catalyzes fŀǘǘȅ ŀŎƛŘ ʲ-oxidation in the mitochondria of cells.125 
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Class E 

Class E flavoprotein monooxygenases are also encoded by two genes; the first 

gene encodes the monooxygenase component, and the second encodes the reductase 

component. They use reduced FAD cofactor generated from the reductase activity to 

mediate the monooxygenation catalysis. The reductase component can use either NADH 

or NADPH as reducing equivalents. No structures are available for enzymes of this 

subclass however, sequenece analysis indicate the presence of Rossman fold for 

dinucleotide binding and suggest that they evolved from class A flavoprotein 

monooxygenases. 

Class E flavoprotein monooxygenases are relatively rare. Styrene 

monooxygenase from Pseudomonas putida is one of the few known enzymes of this 

class.126 This enzyme oxidizes styrene in an enantioselective manner to form (S)-styrene 

epoxide with an e.e. of 99%. Mechanistic studies of this enzyme suggested that the 

reduced flavin does not have to be actively delivered by the reductase to the 

monooxygenase and the monooxygenase component can stabilize the peroxyflavin after 

binding reduced FAD and reacting with molecular oxygen.127 

 

Class F 

Class F flavoprotein monooxygenases are also encoded by two genes one for the 

monooxygenese and one for the reductase components. This class of enzymes uses 

reduced FAD generated by the reductase component which uses NADPH or NADH as 
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coenzyme for reducing equivalents. The general structural fold for FAD binding in this 

enzyme class is the Rossman fold. 

The prototype for class F flavoprotein monooxygenases is tryptophan 7-

halogenase from Pseudomonas fluorescens.128 Monooxygenation by this enzyme, and 

related halogenases, proceed via the formation of the C4a-hydroperoxyflavin 

intermediate which reacts with the chloride ion to form HOCl. In the catalysis of 

tryptophan 7-halogenase, this highly reactive nucleophile will travel through a 10 Å 

tunnel to reach and halogenate the bound tryptophan substrate regioselectively.129 In 

this respect, the chloride ion and not the substrate to be halogenated, is regarded as the 

substrate for monooxygenation. 

 

Dissertation Statement 

Deoxynitrosugar moieties are included in many isolated natural products and 

known to play significant roles in conferring biological activity. These unusual sugars are 

distributed among various scaffolds including spirotetronate antibiotics, ansamycins, 

and orthosomycins. Examples of natural products containing deoxynitrosugars include 

everninomicin, rubradirin, and kijanimicin for which the biosynthetic gene clusters have 

been recently sequenced. These recent advances in gene cluster data have enabled the 

proposal of biosynthetic pathways for the aminosugar N-oxidation to generate 

hydroxylamino-, nitroso- and nitro-sugars. Prior to our investigations, there was no 

biochemical data available for the enzymes responsible for this key oxidation to yield 
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these important deoxysugar modifications.  We have targeted the producers of 

everninomicin, rubradirin and baumycin to identify and biochemically characterize the 

enzyme(s) responsible for their deoxyaminosugar oxidations. 

Chapter II describes the initial biochemical characterization of the new 

nitrososynthase ORF36, a flavin-dependent monooxygenase, from the everninomicin 

biosynthetic pathway and its homologue RubN8, from the rubradirin biosynthetic 

pathway which reveals their roles as flavin-dependent monooxygenases in the 

deoxysugar N-oxidation pathway. Chapter III details additional biochemical 

characterization of ORF36 including solving its 3-D structure by X-ray crystallography 

and studying its substrate specificity towards several deoxyaminosugar intermediates. 

This chapter also describes 18O-incorporation experiments aimed at the investigation of 

the mechanistic details of the nitrososynthase catalysis. Chapter IV discusses the role of 

the DnmZ, a nitrososynthase homologue, from the baumycin biosynthetic pathway. The 

surprising role of this flavin-dependent nitrososynthase in a deoxysugar C-C bond 

cleavage and its confirmed role of deoxyaminosugar oxidation are also discussed. 

In summary, this work details the biochemical characterization of three flavin-

dependent nitrososynthase homologues revealing a new and important deoxysugar N-

oxidation pathway for a vast array of deoxysugar-containing natural products. The 

surprising retro-aldol activity of the nitrososynthase enzyme explains a once not 

understood pathway in the biosynthesis of baumycin-like compounds and provides new 

opportunities for utilizing this important biocatalyist in organic chemical synthesis. 
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