A joint project of the Graduate School, Peabody College, and the Jean & Alexander Heard Library

Title page for ETD etd-11212013-144624

Type of Document Dissertation
Author Auden, Elizabeth Catherine
URN etd-11212013-144624
Title Heavy Ion-Induced Single Particle Displacement Damage in Silicon
Degree PhD
Department Electrical Engineering
Advisory Committee
Advisor Name Title
Prof. Robert A. Weller Committee Chair
Dr. Joseph R. Srour Committee Member
Prof. Bridget R. Rogers Committee Member
Prof. Marcus H. Mendenhall Committee Member
Prof. Robert A. Reed Committee Member
Prof. Ronald D. Schrimpf Committee Member
  • single event effects
  • single event displacement damage
  • Shockley-Read-Hall generation
  • radiation effects
  • JFET diodes
  • leakage current
  • ions
  • generation region
  • fission fragments
  • femtoampere current measurements
  • electric field enhancement
  • displacement damage
  • diodes
  • depletion region
  • defects
  • defect density
  • current steps
  • current pulses
  • californium
  • single particle displacement damage
Date of Defense 2013-09-17
Availability unrestricted
Displacement damage from individual heavy ions results in discrete, measurable electrical degradation in 252Cf-irradiated silicon diodes. This work presents measurements of discrete increases in diode reverse current, or current steps, associated with damage from fission fragments emitted by a 252Cf radiation source. A current-to-voltage circuit has been constructed to measure femtoampere-regime current steps following displacement damage as well as picoampere-regime current pulses caused by ionizing energy deposition. Because 252Cf is a source of fission fragments, alpha particles and neutrons, current pulse size is used to differentiate pulses associated with heavy ions from those associated with alpha particles and secondary ionization from neutrons. Measurable current steps are only observed in tandem with current pulses associated with heavy ions. In the 3 to 5 minutes following a current step, reverse current relaxes to a new stable value that higher than the magnitude of reverse current before the step. This relaxation period is associated with short term annealing.

The magnitude distribution of heavy ion-induced current can be calculated with Shockley-Read-Hall (SRH) theory when the expression for generation lifetime incorporates the effects of electric fields in depletion regions. A priori knowledge of experimental damage factors is not required to calculate the magnitude distribution of current steps. Radiation-induced defect density is obtained with Monte Carlo simulations of atomic displacements. Electric field effects are incorporated by modeling midgap defects as 1-D Coulomb potentials in the presence of electric field strengths obtained from TCAD simulations.

The maximum magnitudes of heavy ion-induced current steps obtained from the expression for SRH generation are consistent with the largest current steps measured in 252Cf-irradiated JFET diodes when electric field enhancement of defect emission rates, radiation-induced defect density, and the proximity of multiple depletion regions are taken into account.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Auden_Dissertation_EECS_2013.pdf 5.92 Mb 00:27:24 00:14:05 00:12:19 00:06:09 00:00:31

Browse All Available ETDs by ( Author | Department )

If you have more questions or technical problems, please Contact LITS.