A joint project of the Graduate School, Peabody College, and the Jean & Alexander Heard Library

Title page for ETD etd-11132015-094651

Type of Document Dissertation
Author Prasai, Dhiraj Kumar
Author's Email Address dhiraj.prasai@vanderbilt.edu
URN etd-11132015-094651
Title Monolayer MoS2 and MoS2/Quantum Dot hybrids: novel optoelectronic materials
Degree PhD
Department Interdisciplinary Materials Science
Advisory Committee
Advisor Name Title
Kirill I. Bolotin Committee Chair
Jason G. Valentine Committee Co-Chair
G. Kane Jennings Committee Member
Richard F. Haglund Jr. Committee Member
Sharon M.Weiss Committee Member
  • MoS2
  • Graphene
  • Two Dimensional Materials
  • Quantum Dots
  • Optoelectronics
  • Excitons
Date of Defense 2015-08-17
Availability unrestricted
In this thesis we first briefly explore the barrier properties of monolayer graphene. We investigate how films of graphene can be used to decouple underlying metallic (Cu, Ni) substrate from the environment to passivate corrosion. In the remaining part of the thesis we explore the effects of the environment on electrical transport and optical properties of monolayer MoS2. In particular, we investigate the role of the underlying substrate, metallic contacts to MoS2 and phonons on intrinsic transport properties (e.g. carrier mobility) of MoS2. We then investigate the interplay between gate-induced charge carriers and excitons in MoS2 and discover the tunability of MoS2 optical properties (absorption/photoluminescence). Such strong electron-exciton interaction in MoS2 also opens up the possibility to study interesting quasi particles like trions and biexcitons in a 2D system. Finally, we thoroughly investigate Förster resonant energy transfer (FRET), a uniquely efficient long-range optical process, between quantum dots and monolayer MoS2. We discover that modest gate-induced variation in the excitonic absorption of MoS2 leads to large (~500%) changes in the FRET rate and allows modulation of quantum dot photoluminescence intensity.
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Prasai.pdf 6.30 Mb 00:29:11 00:15:00 00:13:07 00:06:33 00:00:33

Browse All Available ETDs by ( Author | Department )

If you have more questions or technical problems, please Contact LITS.