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CHAPTER 1

INTRODUCTION

1.1 Motivation

In many engineering systems, there are mechatiwraponents that are subjected
to cyclic loads which cause fatigue crack growlthese components are often critical to
the survival of the system as a whole, and a thgitraitnderstanding of their performance
is crucial to facilitate risk assessment and mamege. In 1978, Battelle Laboratories
completed a study requested by the National Buodastandards that investigated the
total cost associated with material fracture in tbeited States [1]. That study
determined that over $88 billion dollars per ye@revbeing spent on material fracture at
that time. This expenditure represented almosbfitlhe national gross domestic product
during that year [2]. The results of the repod te a surge in research emphasizing on
fracture mechanics, material properties, and imgdowmspection scheduling/techniques.
These were the areas that were deemed criticalrdoti® improvement of structural
reliability, reduction of material usage, and mimgation of the replacement of critical
components.

Among the major industrial sectors where fatiguel dracture of structural
components are of critical concern is the aeronautnd aerospace industry. The
aerospace community initially adopted a safe Igpraach in order to increase structural
integrity throughout the design life of a componemn this approach, components are

designed to withstand a pre-determined life andagsumption is that the components



will remain free of flaws. Under this philosophgritical components are retired from
service at the end of the pre-determined safe gé#eiod regardless of the current
condition of the component. There are severalcaEfcies in this type of approach to
risk management. The first of which is the ovesige of the components and the waste
of resources due to the removal of “good” compameinbm service long before
necessary. Another less common, but highly clitiitaw is that unique situations may
lead to a critical flaw being achieved in the comgat within the safe life of the
component.

The limitations in the safe life philosophy led ttte development of a damage
tolerance approach. Damage tolerance (DT) desigased on the assumption that initial
flaws exist in any structure and such flaws wilbpagate under repeated cyclic loading
conditions which are substantially less that treddystress of the material. The concepts
of the damage tolerance approach are based omractechanics principles and have
been pursued for fixed-wing aircraft structuresceithe 1970s [3]. In order for a DT
approach to be viable, a detailed understandinglef/ant component service loads and
stress spectrums, material properties, and cramktgrmechanisms must be known.

The goal of this thesis is to add to the collectkreowledge used for proper
implementation of a DT approach to risk managenwra fatigue-critical mechanical
component. The first aspect necessary for proger af the DT methodology is an
accurate crack growth model that can be used termete the life remaining before an
inspection is necessary. Since numerous studies haen performed to assess the
uncertainty in three dimensional crack growth medd, 5], this thesis will have a

precise focus on numerical errors related to tealpeamd spatial discretization that have



not been previously investigated in much detail.

Crack growth models employ the use of material ipatars such as threshold
stress intensity factor, fracture toughness anéroflarameters that are model specific
like Paris law parameters and ; the values of which are typically obtained via
experimental testing. The variability in the expental data is typically attributed to
either inherent variability in the material itself some type of observation error. In order
to develop a firm understanding of the actual utacety in the material parameters, a
calibration technique that considers all forms n€ertainty in the experimentation must
be employed. Such a technique is developed irtheiss.

Once a detailed and robust crack growth model seged, the model is used to
predict the amount of remaining life in the companieefore an inspection is necessary
to evaluate the condition of the component. The dpproach provides a means for
determining a safe and efficient maintenance inspecinterval, but there is no
consistent methodology for making the decision bfatvtype of inspection should be
performed. There are several different types ai-destructive testing that could be
performed at a given maintenance event. Some ¢tisps are inexpensive and easy to
perform but do not yield precise information regagdthe current condition of the
component. Other inspection systems yield detansigyht into the current state of the
component, but require highly trained technicianscostly specialized equipment.
Another issue of concern with inspection fidelityocce is downtime. Some inspection
procedures require the component in question tet®ved from the engineering system
in order to be analyzed while other can be perfaravhile the component is in-service.

This thesis develops an inspection planning metlogyothat decides both the schedule



and the type of inspection technique by taking iatcount the various uncertainty in

crack growth prediction — natural variability, datacertainty and model uncertainty.

1.2 Organization of the thesis

The primary objectives of this thesis are invegggmodeling and experimental
errors that affect growth life prediction and totemd DT risk assessment to include
decision making with respect to the inspection dalieg and fidelity. Each chapter in
the thesis employs the use of one of two three dé@al crack growth models. The
first crack growth model is an equivalent planaprapch to modeling non-planar crack
growth and the second employs a non-parameterggaesentation of the crack fronts
using principal component analysis.

The thesis is organized into seven chapters. @hagirovides the motivation
behind the presented research and outlines theniaegeon of this thesis. Chapter II
provides a brief discussion of the key underlyitagistical and mathematical techniques
used in this research, which includes Bayesianyaisabhnd Gaussian process surrogate
modeling. Chapter Il also presents a detailedrgegm of the equivalent planar crack
growth model.

Chapter 11l develops a methodology for quantificatof the numerical errors
incurred due to discretization in the modeling dP Rrack growth. The non-
parameterized crack front representation is emplagethis chapter to ease the training
of surrogate models used to quantify the discrétimeerrors. The spatial discretization
error caused by finite element meshing is invetdjaand although the methodology

proposed is for a specific finite element solvecauld easily be extended to other finite



element software. Temporal discretization is atsestigated in this chapter. Generally,
loading in a crack growth simulation is appliedbinck form (collections of several load
cycles of constant amplitude). Crack growth isedefent on not only the applied load,
but also on the previous crack state. It is bezaafsthis dependency that the block
loading leads to a discretization error. With Bldoading, the crack increment for a
single load cycle is simply multiplied by the lehgif the block to determine the crack
growth increment over the total load block duratiddeally the crack growth would be
calculated incrementally after each load cycle #mel difference between the block
approach and the cycle by cycle approach is refeiweas the temporal discretization
error. The methodology proposed in Chapter llivdes a technique for quantification
of this type of numerical error. For practical eregring problems, it is important to not
only understand the individual contributions of fral and spatial discretization, but
also the combined effect. The combined spatio-teaimliscretization is also modeled in
Chapter Il of this thesis.

Chapter IV seeks to fulfill two goals. The figgbal is to investigate the types of
uncertainty that are present in fatigue fractuneeeixnentation. Machine calibration and
alignment, imaging errors, and other observatioarsrare investigated. The second goal
of the chapter is to account for these identifiedrses of error/uncertainty in calibrating
material properties that are necessary for modebngfatigue crack propagation.
Bayesian model parameter calibration is employedhis purpose.

The results of the model parameter calibratioonglwith the discretization error
guantification presented in Chapter Il will thea bsed to correct the equivalent planar

crack growth model. The goal of Chapter V is ttidate the equivalent planar crack



growth law model using experimental results obtaifrem Bell Helicopter Textron Inc.
for a two radius hollow cylinder similar to a rotoaft mast. Chapter V demonstrates
how multiple sources of data can be combined irageB network to provide a robust
validation scheme. Bayesian hypothesis testingb&ilutilized to perform this task and a
model confidence based on the validation will bespnted.

Chapter VI extends the DT approach to risk managene fatigue critical
components to consider inspection scheduling addlify. The effect of inspection
fidelity and model prediction uncertainty on thedéh of the next inspection interval is
studied. The information gained from the analysighen used for decision making
regarding inspection schedule and fidelity.

A summary of the results of each chapter is predich Chapter VI. The potential
future work that could be performed to expand anchrrent study is also presented in

the chapter.



CHAPTER 2

BACKGROUND INFORMATION

This chapter provides a brief introduction to sotme key underlying statistical
and mathematical techniques that are essentiahd@ofdrmulation of the uncertainty
guantification and risk management methodologie®ld@ed in this thesis. The focus of
the first section of this chapter will be on thevelepment of Gaussian process models.
Gaussian process regression models are used heathly second section of this chapter
to introduce a crack growth model that will be iagd in Chapters V and VI and in
Chapter Il for the use of uncertainty quantificatiin another 3D crack growth model.
The third section of this chapter will provide theader with a basic introduction to
Bayesian networks. Bayesian networks will be z#idi in Chapters 1V, V and VI for the

use in Bayesian model parameter calibration.

2.1 Gaussian process surrogate modeling

In many practical engineering problems, complicafiede element solvers or
computationally taxing computer simulations musebgloyed to obtain numerical data
for detailed analysis. Reliability studies requiresast amount of numerical data which
makes problems where the acquisition of said datamputationally difficult very cost
prohibitive. To overcome this hurdle, surrogate dele are typically developed.
Surrogate models, or as they are sometimes cad@axmation models, are designed to

mimic the simulation model as closely as possikiderbeing far more computationally



more efficient. Different types of surrogate maadgl techniques (conventional
polynomial response surface, polynomial chaos esipan6], support vector regression
[7], relevance vector regression [8], and Gausgiatess interpolation [9]) have been
investigated in the literature. This thesis empltlye use of the Gaussian process (GP)
surrogate modeling approach, which is a powertthtéque based on spatial statistics for
interpolating data and is increasingly being usedbtild surrogates to expensive
computer simulations for the purposes of optim@atnd uncertainty quantification [9,
10, 11]. There are three distinct advantages & G model over other surrogate
modeling approaches: 1) it is not constrained blyrmmial-type functional forms, 2) it
is capable of representing highly nonlinear retashdps in multiple dimensions, and 3) it
produces an estimate of the prediction uncertadependent on the quantity and location
of training data.

To demonstrate how a GP is built, consider an tiftive example. Let the

underlying function be known at training points. The set
represents the training data where is the set of

measurement locations and is the set of measured

function values. is the set of underlying function values.

It is assumed that measurement noise, !

The information contained in data , is then used to infery, the value of the

underlying function at points 4 , by computing the distributio8%& In
general, a trend function is then applied and #s&duals of the trend function are
modeled by a Gaussian process. A GP is fully éefiwith the specification of the mean

function, , and the covariance functiof, ) . These functions must be selected



so as to reflect the assumptions (such as statipnareriodicity, etc) about the

underlying function describing the data [12, 13]. 1&he covariance function provides a
flexible and realistic assessment of the predictianance, and quantifies the effect of
the distance between prediction and training poimisdetailed comparison of different
covariance functions, both stationary[15] and ntatisnary[16], can be found in the

literature.

2.2 Surrogate modeling of 3D crack growth

The main goal of this thesis is to provide methodms toward uncertainty
guantification and risk management in a three-dsimral crack growth. Toward this
goal, two different crack growth models, both witie capability of capturing the non-
linear kinetics of non-planar crack growth in a im@aical component under multi-axial,
variable amplitude loading, will be analyzed. Oapproach will employ a non-
parameterized representation of the non-planarkcradhe basic idea behind this
proposed method is that it allows for the user tnitor complex crack configurations
and the generation of arbitrary crack front shap&sdetailed discussion of this method
will be presented in Chapter Il along with the qgtiication of discretization errors
related to simulated crack growth.

In this section, a second approach to non-plareckcgrowth will be discussed.
The second proposed method for crack propagaticshelimg employs a parameterized,
equivalent-planar representation of the simulateaclc fronts. For each of these
methods, the surrogate models implemented wilrd@ed using finite element analysis

results produced via FRANC3D[17]. FRANC3D is aitBnelement based solver



specifically designed to simulate non-planar crgadwth of complex three dimensional
structures.

The primary advantage to the planar approximatien that the crack
representation is limited to an idealized sempélial shape (see Figure 2.1) that is
characterized by two geometric quantititesgand+. The stress intensity factor range and
crack growth increment at each load increment ey be calculated at the semi-major
A) and semi-minor (C) axis locations. Equivalel@nar crack growth projects the non-
planar cracks onto a single oriented plane, ancthee reduces the complexity involved

in the crack representation, enabling the propagdt be modeled more efficiently.

(a) Planar Crack Growth (b) Equivalent Planar Crack Growth

Figure 2.1: Equivalent-planar crack growthcorresponds to crack edge along the major
axis and to the crack edge along the minor axis.

Equivalent planar approximation relies on an esteanof the overall crack
orientation for its analysis [18]. Considering kKoading in this application, each
applied load scenario will consist of a differentmber of load blocks, a block-by-block
relationship between crack characteristics, andifiptied load considered:

-./012 3- ./124./2
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where3 is a non-linear function that defines the relagiop between the current crack
shape,-./2 , and the applied loading./2 at the/ -th load block. Crack shape is
represented by the crack configuration (orientaéiod length); ./2 5 ./2*/2), and
the applied load. This non-linear relationshimigdeled as a GP:

-./01267- ./124./28 1)
where8 9! 4 l.2represents the parameters of the squared expaheantiariance
function assumed for the GP. The paramkterepresents the uncertainty in the training
values of5. and*. which results from variations in the FRANC3D mesltameters set
for each crack increment simulation. The parameterepresents the variability in the
output variable. The length scale paramet@rgharacterize the variation of the output
variable with respect to the input variables arete¢fore quantify the importance of each
input variable. The training of the surrogate mammsists of estimating the parameters
8 of the model using the training data acquiredfithiee element analyses.

The first surrogate model implemented in this eal@nt planar crack growth
prediction technique is utilized to predicted theeotation of the crack front while the
second is used to estimate the stress intensitgrfaange at a given crack stage. The
stress intensity factor is a function of crack shappmponent geometry and applied load.
As described in [19], an efficient surrogate mocheh be constructed to replace the finite
element simulation in the calculation of the striesensity factors for crack growth on a
plane. For use here however, the plane is actuallyequivalent plane meaning the
surrogate model must be adapted to account foicthek orientation. The surrogate
model extended fds as an additional input is

1. 67*+=58 2
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Once the two surrogate models for crack orientatiad stress intensity factor
calculation are completed, the crack prediction eh@@dn be assembled. Since the main
components to most crack growth laws are curreamtkcshape, stress intensity factor
range, and loading duration, this surrogate modetmethodology could be applied to
any such crack growth model. In this thesis howeRaris law is implemented due to its

simplicity and accessibility.

2.3 Bayesian networks

In this thesis, Bayesian calibration will be useddetermine the distributions of
model parameters when experimental data is availabT’he model’s prediction is
compared against the experimental data and sarapetmken of the parameters so that
the likelihood of the model prediction matching theta is maximized. To perform this,
Bayesian networks are employed to gather all mquielameters and sources of
uncertainty.

To understand how a Bayesian network is operated,noust first have a solid
understanding of Bayes’ theorem [4] on which therapch is based. First consider a
group of mutually exclusive and collectively exhiues events, (>= 1 to/) that
together form a sample space. Suppose ther?tigtany other event from the sample
space, as long a®? A , it can then be deduced that from the law of ciowml

probability

B CDgBD
o) E E

@, - FoBY%&®¢E B Dg (3)

A physical interpretation of the above equationlwdllow. In Bayesian

terminology, the quantities@, are known as prior probabilities and are the

12



probabilities of the events prior to any observathd If an even? is then observed, the
result of the equation can then be calculated aedrésult,@, ? , is known as the
posterior probability. It is by this methodologyat Bayesian analysis updates a prior
assumption about the distribution of a random Vdeidbased on observed instances of
that variable or functions of that variable.

A Bayesian network is a graphical representatiorthef relationship between
various uncertain quantities in a system. Bayes&works are an example of a directed
acyclic graph, which is to say that it is a coliectof vertices and directed edges. Since a
Bayesian network is a mean by which the outputsoaiponent and subsystem level tests
can be related to the inputs of the overall systidw®,nodes or vertices of the Bayesian
network represent each uncertain quantity in ttstesy and the directed edges represent
the nodes’ relationships in the terms of conditigmababilities. Disconnected nodes
imply independence between the corresponding randarables. An example of a
conceptual Bayesian network that aids in uncegajoantification across multiple levels
of models and observed data is presented in Fig2reThe common presentation (used
in Figure 2.2 also) in Bayesian network is to reprég uncertain parameters with circular
nodes and to represent observed data with squatesnoThe conditional probability
links between variables are represented by solige®dh the diagram and if observable
data is available for a particular variable theat tielationship is illustrated with a dashed

line in the figure.
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Figure 2.2: Conceptual Bayesian Network

The system presented in Figure 2.2 is composed@fktbsystems. The system
outputHis a function of the two subsystem outputsandl . Each subsystem has two
distinct input variables] andJ for subsystem 1 antk andJ, for subsystem 2. In this
sample problem, two of the input variablds,andJ,, are to be considered as model
parameters such as a material properties geometnistants. For the sake of
demonstration it is assumed that there is no obsiervdata for the system level output,
but observable data is available at the subsysig#puts and that data is represented in
the figure asM andM.

There are two methods of use for Bayesian netwofkswvard problems
(uncertainty propagation along the the flow of tBayesian network) and inverse
problems (updating the uncertainty in the paremtesdbased on the data on a dependent
node using Bayesian inference [5]). Since therse@roblem is the type necessary for
the use of Bayesian networks in this thesis, thethod will be presented. For more

details on the forward problem see [20].
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In the inverse problem, the probability densiti€she model parameters (and
J. in Figure 2.2) can be updated based on the oldatata M and M) using Bayes
theorem as:

JJMMNOJ J VI3 JJ, (4)

The joint posterior density is given byd J. M M . The likelihood function,
0%JJ,. ', is calculated as the probability of observing gineen data1, M), conditioned
on the parameters being updated,J.eandJ, . The likelihood function accounts for the
uncertainty in the input3 andJy. For details of the likelihood function, refer[&i].

A prior distribution (?J and ) J_ ) is a representation of all of the
knowledge known about a parameter before collecang additional data. Prior
distributions of the random variables of interesih dbe either informative or non-
informative. If a significant amount of informatias known about the behavior of a
variable, an informative prior can be used and askist the analysis. For instance, the
parameters of common materials may have well knaltributions, manufactured
products may have specified nominal values andaote levels, or an expert may have
a high level of confidence that a parameter faila icertain interval range. This concept
of the prior distribution is heavily scrutinized hyetractors of Bayesian statistical
methods because the assumptions made about thelistitbution affect the result of the
Bayesian analysis. Poor assumptions of prior médion will ineffectively bias the
resulting posterior distributions. However, thelusion of useful information into a
prior distribution increases the effectivenesshaf analysis and eases the computational

difficulty. The prior distribution describes thelgective knowledge about the system

15



and the associated uncertainty. This prior knogéed updated in the Bayesian analysis
process when new information becomes availablehéenform of testing or inspection
data. This leads to the reduction of uncertaintthe system-level prediction. For more

information about prior distributions, includingmanformative priors, refer to [21].
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CHAPTER 3

QUANTIFICATION OF DISCRETIZATION ERRORS USING SURRO GATE

MODELING TECHNIQUES

3.1 Introduction

Surrogate modeling is typically used to replacera@nsive computer simulation
in order to save time and expense. The surrogaidelnpresented in this chapter
represents non-planar crack growth in mechanicalpoments under multi-axial, variable
amplitude loading. The approach presented hereuats for the effect of both spatial
and temporal discretization in the 3-D finite elerhanalysis of non-planar crack growth.

The surrogate modeling technique that is preseimee models the relationships
between crack fronts obtained at different diszedibn levels. The surrogate model can
use these relationships to predict crack front ekdpat are corrected for the effects of
discretization error. These corrected crack fromts then used to develop another
surrogate model that empirically captures the miogalr kinetics of the non-planar crack
growth in a mechanical component under multi-axiakiable amplitude loading. The
objective is to develop a computationally afforaalykt accurate model, which uses a
small set of training data to model the evolutibrerack growth in the component. Once
the model is trained, it can be used in a predicthanner to determine the next stage of
crack growth given a current crack shape and l@psieenario.

Existing methods for the use of surrogate modetscfack growth modeling

reduce the complexity in crack representation su@sng a parameterized planar crack
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representation and model the relationship betweaackcsize, applied loading, and
equivalent stress intensity factors [22, 23].

While the parameterized crack representation esalaleid assessment of crack
growth, a parameterized crack model also limitsgbsesible shapes that the crack can
take during the simulations. The surrogate modelsgnted here employs a non-
parameterized crack front curve thus allowing fanare realistic representation of non-
planar cracks. By representing the cracks inwhayg, the analysis can consider complex
crack front geometries. The crack can be allowedptopagate naturally forming
arbitrary configurations thereby allowing the reaship between crack fronts at varying
degrees of discretization to be modeled accurat&he proposed method is a three step
approach which involves: 1) crack front representat2) estimation of corrected crack
fronts (corrected for discretization errors), andn3deling of crack growth kinetics.
First, a low dimensional non-parameterized repradem of the crack front curves is
sought. This first step is necessary so that thetiks of the crack growth can be
modeled in this low dimensional space which easas of the computational
complexities associated with this type of problemn.the low dimensional space, robust
surrogate model training can occur with relatividhle training data.

Description of the modeling of the fatigue crackowth in a cylindrical
mechanical component (similar to a rotorcraft mastpresented in Section 3.2 below.
The focus is on defining the representation of raxtal, variable amplitude load blocks
and histories. A more elaborate discussion oruieeof block loading in a fatigue crack

growth application was presented in Chapter Il.e Bxample presented in Section 3.2
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will be carried forward in each subsequent secliwrease of illustration of the methods
developed along the way.

Dimensionality reduction requires fixed dimensicgpnesentation of the data
space. For the problem of fatigue crack growthyais a spline-based representation of
the crack front is considered. This type of repn¢gtion reparameterizes the crack front
curves such that all of the crack fronts associatithl the analysis can be systematically
represented in fixed dimension.

The Gaussian process regression presented in £6&c8ads used to estimate the
corrected crack front after the application of sagneen load block. This estimation is
used to model the non-linear kinetics of crack dlounder variable amplitude loading.
In Section 3.4, a methodology is proposed to accfrtemporal, spatial, and combined

spatio-temporal discretization errors.

3.2 Simulation of non-planar crack growth
In general there are a few items that crack gromtbdels need in order to

perform their function of fatigue crack growth piettbn. An initial flaw size, shape and
location is usually a prerequisite for fatigue éragcowth analysis. Most models utilize
some form of material constants for the given gpeai, although for many models these
“material properties” are just fitting constantsséd on experimental testing [24.
Another common variable in fatigue crack growth mlsds the stress intensity factor at
the crack tip. Since the stress intensity factatapendent on the component’s geometry,
applied load, and current crack size and shapsgetheoperties are also crucial to most

analyses.
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All of these factors are critical to the analysms their own right, but their
interaction with each other can also have importaohsequences in terms of
implementation of full non-planar crack growth siation. A more detailed description
of the options available for the full scale simidathas been discussed in Chapter Il. A
brief discussion relevant to the non-parametriclcigrowth model is presented here.

For illustration purposes, a two-radius hollow igtical component like a
rotorcraft mast is to be used throughout the redwif this chapter. Based on stress
analysis under bending and torsion loads, thet fidgion of the component (see Figure
3.1) was identified as the region of highest stmmscentration and therefore the most
likely location for crack initiation to occur. Csequently, all analyses in this chapter
assume that an initial elliptical surface flaw isegent in the fillet region of the
component. FRANC3D [17] is employed for automateatck representation and crack
propagation. FRANC3D utilizes ANSYS [25] for conmamt stress analysis and
implements a crack tunnel and singular elemengsdvide automated local remeshing at
the crack location. In order to ease computati@fi@irt a submodel of the fillet region
was extracted from the full model. A diagram of #xtracted submodel and the crack
tunnel (local mesh) are presented in Figure 3.2thiwthe software, the maximum shear
stress criterion is used to determine the cracktralirection [25]. Paris law [26] is the
crack growth model used to estimate the crack drowtrement. The deterministic
values used for “material constants” and were 1E-9 and 2.7 respectively.
Deterministic values for these variables were usedhis chapter for the sake of
simplicity as their uncertainty is not of primarpncern; however, a more detailed

analysis of proper representation of these parameésepresented in Chapter IV. It
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should also be noted that the methods of disctetiz@rror quantification presented here
are not limited to the choice of aforementionedckrgrowth criteria. These specifics

were only chosen for the clarity of illustration.

| EEEEESSS——— |
0.0439 4.478 8.913 13.347 17.782
2.261 6.696 11.13 15.565 19.999

Figure 3.1: Plot of stress profile within rotordrafast component under bending and
torsional loading

Sub Model

FullModel Sub Model Extraction

Figure 3.2: Finite element meshes of the full mpdebmodel, and crack tube (local
mesh)

A cycle-by-cycle approach, in which the crack gttowanalysis is performed for

each load cycle, provides the most accurate estimiatrack growth. Since the growth
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per cycle is on the order daf PQ R 1 PS in/cycle for this high cycle fatigue problem,
this high fidelity approach presents significanmputational demands both in terms of
the number of cycles and the number of nodes reduir the Finite Element Analysis
(FEA) mesh. The complexity of the crack shapedases with each iteration of the
simulation. This increases the requirements f@& temeshing stage because more
complex crack front shapes demand a finer meshdourate representation.

Therefore an incremental block-type crack extemsinalysis is employed here.
Since the FEA program creates discrete points aloamgrack front to represent the crack
shape, these points are how the crack is propag#tetthe block loading approach, these
specific points are extended by a multiple of tlmack growth increment that was

calculated by the FEA program for a single cycle:

T Uy W (5)
whereT* is the total crack growth applied to the currestaltion of the point on the
crack front,U, is the user defined block duration, ag(%is the crack growth increment

predicted by the FEA solver for a single cycle teg turrent crack state for that point
along the crack front. The advantage to this neeikdhat it allows for crack extension
without the requirement of constant crack updating remeshing after every load cycle
making predictions for long mission durations a#dile. There are some glaring
weaknesses in this approach however. The firgthoh is the dependence on the load
history consisting of several sub-blocks with canstamplitude loading. For some
problems this assumption may not cause a large ibsiti for a component such as a
rotorcraft mast it is highly unlikely that the loagplied to the mast will be of constant

amplitude for any sustained period of time. Theosd and more general problem will

22



be the focus of one of the subsequent portion#isfdhapter. Since the crack growth
prediction is dependent on the previous crack state erroneous to assume that the
crack growth prediction for a single cycle will berrect for an entire block of cycles.

The numerical error created by this assumption Wil treated as the temporal
discretization error from hence forward.

For this demonstration problem, each load his@wvill consist of , individual
load blocks, ? ./ 2 " Z. These load blocks represent different duratimmd bending

and torsional load amplitude®,./ 2 \ ./ 2]y./ 2U,./ 2. Because of constraints due
to the FEA solver’'s ability to model incredibly sinarack growth increments, the

bending and torsional load values were Ilimited tourf values each:

\ 1 " ar ata aM and] N 1M aM bM . The durations for each of the 16
possible load combinations were also chosen acutdi the previously mentioned FEA
constraint. All of load blocks used in the demastsbn problem are presented in Table
3.1.

Using the load blocks tabulated in Table 3.1, @&l histories, each of 120,000
cycles total duration, were randomly generated gusinbucket-filling algorithm. The
algorithm begins by randomly selecting a load blockhe next block is then selected
randomly only this time with the constraint thae ttotal duration must be less than
120,000 cycles. The process of random block selecbntinues until a load history of
120,000 total cycles is created. Note that whileheload history has a total of 120,000
cycles, the number of blocks within each historyie@a Twelve samples of these load
histories, along with the corresponding final cracientation5,, are listed in Table 3.2.

As an example, the first load histo®y is illustrated in Figure 3.3. The corresponding
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crack fronts are shown in Figure 3.4. The chamgerientation of the crack fronts as
they evolve is noted.

Table 3.1: Load block descriptions

Table 3.2: Load histories descriptions
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Figure 3.3: Loading history 1: 120,000 cycles ¢b&ding blocks. Each block consists of
bending load \,./2, torsional loady,./2, and load duratiok,

Figure 3.4: Crack configurations for load historyThe five fronts after each of the five
blocks in the load history has been applied.

3.3 Crack representation
The crack fronts generated by the simulation desdrin the previous section
may be represented &g = [X,, Yn, Zn], where/ is an index into the loading block, and

Xn, Yn, @andZ, are . c1l vectors of the respective Cartesian componenthef -th
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crack front. Due to the mesh refinement that cx@fter the application of each load
block, the crack fronts consist of a varying numbérrepresentative points. As a
consequence, no immediate correspondence can bbligstd between the nodes
belonging to two different crack fronts, and the@lepment of a model that captures the
relationship between the crack fronts is not pdssib A consistent parameterized
representation of the crack fronts is thereforeiireq.

The first step toward the generation of a constiteparameterized representation
is to develop a spline representation of the cragkts C,(s) = {Xn(S), Yn(S), Zn(S)},
whered . 12 is the spline parameter [27, 28]. This is achielpg parameterizing the

elements corresponding to each compognwith:

e f —— P51, LR1 (6)
gh 9h dh

Thus the discrete point3, are now represented by the spline cud¢ée ). However,
while the above representation provides a paramatem of all crack fronts in the
interval [0,1], the correspondence between thekcfeants is not apparent since each
crack front is still parameterized by a differeat of

In order to represent all of the fronts by the samumber of parameters the
number of spline nodeg, , must be chosen and the spline node separdtidn
jR1 P must be set. Then using the interpolation prgpeftsplines, each spline
representation is reparameterizedeat T aT JR1 T . The reparameterized
representation of the-th crack front corresponding to the load histdBy,may then be
written as:

lye mydn, doyd (7)
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wherem, d ny, d pgro, d are now of sizgc1l . s\ is then-th crack front of load
history,Q,, and is represented by, where the parameterization of the latter is iifi
understood. The crack fronts due to load his@ryand their spline representations are
shown in Figure 3.5 for illustration. The fidelibf the re-sampled spline representation
increases all increases.

In general, crack fronts represent arbitrary csirweith discontinuities and
branching. While the crack fronts generated by FB#\ simulation described in the
previous section do not possess these charaateyisiie use of splines allows for the
modeling of discontinuities in the crack shape.adidition, an important consideration in
this work is the ability to describe a crack of aaspitrary shape and analyze its

propagation under a given load history.

Figure 3.5: Spline representation of the cracktftmingM = 31 spline nodes per front:
Mesh nodes are represented as lines and spline asdzrcles.

Under the reparameterization described above, eack frontl ./ 2is represented by a
3M — dimensional spline parameter vectoy./ 2 m ./ 2ny./ 20y./ 2. This allows
for the modeling of arbitrarily shaped curves créaaats and the modeling of them as
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freely deformable space curves. While the fideditypline representation increased/as
increases, so does the dimension of the data spacd,he tradeoff of representation
fidelity versus data space dimensionality limite tise of space filling designs which are
necessary for accurate training of surrogate maasdisthus prohibits direct modeling of
crack growth kinetics in the high dimensional dsppace. Instead, a principal component
analysis (PCA) based compact representation afrdek frontsC, will be used.

Specifically, for each crack frontCy[n] a corresponding latent space
representation must be found:
ty/2u dy/2RVN (8)
wherelV is thel cbj vector of the means of the crack fronts due tathi@ing loading
histories K, and

v vO01 9)
which is the total number of crack fronts in thaining set. U is abjcx  matrix
containing the bases of the latent space\@nid thex c ~ matrix of the latent variables
corresponding to th&l crack frontsC in the training set. The dimension of the latent
space ixy j

Based on the covariance matrix of a spline comp®e CC', PCA is employed
to extract 81 uncorrelated linear bases for this space. Thaseshare ranked according
to the amount of variance that they capture, wiltle first component accounting for the
most variance. To achieve this ranking, PCA enwpleygen-decomposition of the
covariance matrix,S; eigenvectors provide the uncorrelated bases, eigdnvalues
provide a measure of the variance by which theesponding eigenvector can be ranked

[29]. This transformation may be inverted fronelatspace to data space using:
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ly./2 ut ./20 IV (10)

The latent space of the crack fronts was estimatgidg the parameterized
representations of each of the crack fronts avieilflom theK = 28 simulations. The
contributions of the first 10 principal componefasit of a possiblé = 93 components)
is tabulated in Table 3.3. As is seen in the tatble first principal component captures
97.38 percent of the variance. In other words3®percent of the variation of thM3-
dimensional domain is located along a line, and®8®ercent of the variation on a plane
spanned by the first two principal components. sTthe most important parts of the
spline components are their projection on the satep spanned by these principal
components. The crack front which is representedlb- variables in the data space,

collapses to a single point on a line or a pland@énlatent space.

Table 3.3: First ten principal components: Eigengaland percentage of variability

explained by the principal component

The eigenvectors represent the principal modegadhtion of the crack fronts

about the mean shafle The first principal component accounts for theections of
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major variation, which correspond to the directiorwhich the most active nodes move.
For example, in th& spline component, most of the growth is in thedlgdodes (see
Figure 3.5) and the first principal component cegduthis variation. The second

component accounts for the variation unexplainethkyfirst component.

3.4 Surrogate modeling for non-linear kinetics of ack growth analysis

The previous section was concerned with the reptation of the crack front. In
this section the focus will be on modeling the krgcowth process under a prescribed
loading by modeling the trajectory of each crackhie latent space. Towards this,ugt
be the latent space representation of the crack fibthe beginning of the-th loading
cycle. Application of a load, results in a new crack front representedwhy;. The
general form of thip + 1-th order kinetics may be written as:
-.J0 12 3- ./2-./R12 - ./R$24./2 (11)
where$ | . In this work, it is assumed thgis a non-linear function of previous crack
shape and loading history. By using previous crabkpe and loading history as
regressors, this non-linear function may be modddgdusing a Gaussian Process
Regression [14, 30, 31]:
}-./01267 -.2-./R12 - JR$24./2 (12)
A brief introduction to Gaussian Process Regressias presented in Chapter Il, for
further details see [14]. For example, the finstew Markov kinetics, in which the next
crack shape depends only on the previous crack eshgp = 0),

-./012 3 -./24.]2, the training data would be of the form preseritedable

3.4. By considering sequences suckmld 2-~/+ 1€ -~/ $€4 (2 -/012
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the kinetics model may be extended with higheroi®i¢ 1 dependencies in either the
crack shape of the loading history. This only @ases the number of input variables and
thus the size of the training matrix. It shouldcabe mentioned that only a single FEA
simulation was used to illustrate the principalgoined, but several such simulations

may be incorporated.

Table 3.4: Training data for first order Markov &tits

Prediction for entire load histories may be ol#diby considering an iterated GP
model in which the crack front prediction from f@vious stage is taken as input for the
next stage:

}-./012 67 .2-./R12} .$24./2 (13)
Given an intial crackv[0] and a load historgy, of / loading blocks, the objective is to
predict crack fronls .12}- .a2 }- ./ 2

For illustration, a small example will be consielér The evolution of an initial
crack front for load histor® « e« + <+ will be predicted. The load history consists
of 4 load blocks (7,3,11,3) with a total load diatof 120,000 cycles. Using a first
order model and starting from an initial cracl four crack fronts Kk L areto

be predicted:
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} .12 67- . 2. (14)

} a2 67 .12« (15)
}- .b2 67} .a2e (16)
F .f2 67 b2« (17)

wherew; is the latent space representation of crack frant

The work presented in this section up to this pbas focused on the
development of surrogate models for non-linearlcgrowth kinetics. The load blocks
have been applied at their coarsest temporal reésoland the simulations have been
performed at the coarsest spatial mesh. This rdetbgy can now be extended to
consider the effects of discretization by modelimg non-linear relationship between the
corrected crack front, the applied load block, grelcurrent crack shape:
}».0123- ./2-./R12 - ./R$24°/2 (18)
wherg- » ./0 1 2represents the estimate of the crack front didleeno-th block at a
temporal resolution of 1 cycle and infinite meskalation andt<./2 represents the load
block at the coarsest temporal and spatial reswiutin what followg; -:( 2represents
the crack front due to tHeth block and a resolution level The discretization level
indexj ranges from O td , where a level 0 implies the coarsest resolutimhalevelt
implies the finest resolution.

In the same manner as was presented previouslgviblution of the corrected
crack front can be modeled as a non-linear funatigorevious crack shape and loading
history:

}-»./012 67- .J2-./R12 - .JR$24%/2 (19)
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Given an initial crackv[0] and a load histor®, of nload blocks, the objective is
to predict the corrected crack fronpts .12}- » .a2 }- - ./ 2 Prediction for entire load
histories may be obtained by considering an itedr@&E model in which crack front
prediction from the previous stage is taken aspatiin the next stage:
}»./01267- »./2./R12} »./R$24°/2 (20)
While the surrogate model prediction depends oregtienates of previous crack shapes
at the highest level of discretization, its depam#eon the load block is only at the
coarsest level.

The evolution of an initial crack frontgfor load historyO « ¢ ¢ ¢ may

then be written as:

}r 12 67- . 2. (21)
}r.a2 67} .12+ (22)
}r b2 67} - .a2e (23)
} o .f2 67} v .b2e (24)

Thus the surrogate modeling technique for craokvgr kinetics may be extended
to account for the effects of spatial and tempdisdretization. However, the surrogate
model for crack growth with discretization requiestimates of the corrected fronts for
each block. This contrast between the two modethiown in Table 3.5, where the

training tables for first order uncorrected andreoted crack growth kinetics are shown.
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Table 3.5: Training tables for surrogate modelioigdrack growth analysis

The non-linear evolution of crack front shapes &sation of discretization level
must now be considered:
-2 Q9. PP (25)
wheret :>2is the crack front for thieth load block at theth level of resolution and can
be modeled as a Gaussian process regression:
-2 67 - Up- P P (26)
Thus for each load block, under consideration, a surrogate model is requoqutedict
the corrected front, » .> 0 12at the highest level of discretization. The tirmgndata for
such a surrogate model consists of crack frents> 0 12 at various levels of resolutign
and is presented in Table 3.6. Note that whiledfaek shape at the highest resolution
depends on the shape of the crack the coarsedutiesp for the construction of the
model for corrected crack front of a given blodkstremains constant for all the training
points and may be thus be omitted from the regras#is a consequence, the corrected
crack front for a given block is determined only asfunction of the level of

discretization.

34



Table 3.6: Surrogate model training at various lrggmns

For illustration, first the effect of temporal distization will be considered. To
exhibit this, a sample load block of 36,000 cycle#l be corrected for temporal
discretization. Four different levels of discratibn were considered: 1) one block of
36,000 cycles, 2) two blocks of 18,000 cycles,dirfolocks of 9,000 cycles, and 4) eight
blocks of 4,500 cycles. For each test, the craokt$ were extracted using 3D FEA
simulation. The crack front after each mesh tem then transformed into a latent space
representation in order to estimate the correctadkcfront. A surrogate model was
constructed using crack representations to thregldeof discretization (36000, 18000,
and 9000) and the crack representation due to it elocks of 4500 cycles was
retained as verification data. The surrogate madel the predictions at discretization
levels of 4500 cycles and 1 cycle are shown in f&igB.6. The predictions of the
surrogate model are shown as red circles and ttualadata points are shown as blue
circles. A fair agreement between the predictiantlde 4500 cycles and the

corresponding observed value is noted.
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Figure 3.6: Estimation of corrected crack fronthwtiémporal discretization

The above discussion presents the estimationroéated crack fronts for a given
block; however, the kinetics of crack growth mustdonsidered for entire load histories
consisting of multiple load blocks. Extension efblock corrected crack fronts to entire
load histories is illustrated in Figure 3.7 forhaee block history? ? ?¢ and a given
initial crack front o In the first step, the initial crack is indepently subjected to the
first load block at three different levels of distization?® ? , and? . The crack fronts
resulting from these FEA evaluations are then egygaldo construct the surrogate model
67 , which is then used to predicted the correctedkcfeont at the highest level of
discretization, » . This predicted crack front is then used as tipaiti for the next step

and is used to predict the corrected crack froettduoad block? .
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Figure 3.7: Estimation of discretization per bldoka three block load history

Together, o =~ represent the evolution of the corrected cracktfiaomd
may thus be employed for any given load historpwiver, these estimates are based on
expensive evaluations of crack shapes at varioredeof resolution and are infeasible
for direct use in a probabilistic analysis. Inste@n the proposed approach, such
estimates are evaluated for a few training loadohiess and then used to construct the
surrogate model described previously. This alldas efficient construction of a
surrogate model that generalizes the non-lineatiogiship between the current crack

shape and the effect of discretization due to arglead block.
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3.5 lllustration of discretization error modeling

While the ultimate goal of discretization errorabysis is to determine the
combined effect of both temporal and spatial diszagion, it is also important to
understand the contributions that each type ofrélisation brings to the error in the final
result of each FRANC3D simulation. Consequentlye teffect of each type of
discretization error will first be used separat&ycorrect the crack fronts and then their
combined affects will be analyzed. To this endyrftoad histories, each of 120,000
cycles total duration, were considered: s %, Sa.* ¢ ¢ Se e S and
*s* ¢ * ¢o. For each load block of a given load history, ttmresponding
corrected crack front can be estimated using tipeoagh outlined in Figure 3.7. Three
of the load histories were considered as trainiag,dand one load history of four blocks
was used for verification purposes.

Temporal discretization will be considered firdeor each block of the training
load histories, the training data was obtained dnys@ering three different discretization
levels:d, d/2, andd/4 (whered is the duration of the training block). The caotesl crack
front corresponds to duratiah= 1. The surrogate model was constructed using 2he
data points from the training load histories aswahan Figure 3.8. In addition to the
surface of the surrogate model, the training poiatgl prediction points are also
presented in Figure 3.8. In Figure 3.9, the respoof the surrogate models at the
verification blocks is converted to the originaltalaspace and compared with the
corresponding block estimates of corrected froatstie verification blocks which form

the baseline values. As seen in the figure, tlmdwacted crack front which corresponds
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to 2>2 underestimates crack growth due to the use afnsesvative estimate of the
equivalent stress. The prediction of the surrogadeel is similar to the estimates of the

corrected crack fronts using expensive 3-D FEA $atans.

Figure 3.8: Temporal discretization surrogate model

For illustration of the spatial discretization plem, a detailed description of the
local mesh in the FEA simulations must be providéd.order to accurately analyze the
stress region along the crack front while maintagnicomputational efficiency,
FRANC3D implements the use of a crack tube arobedctack front. The crack tube is

utilized so that remeshing can be
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Figure 3.9: Crack growth predictions consideringperal discretization

performed quickly. Therefore, refinement of thesimeés limited to a few parameters
which control the size of the crack tube. Sinoe naumber of circumferential elements
around the crack tube is limited due to constraielsted to the FEA solver, the number
of rings around the crack front is chosen as thehing parameter. For each block of the
training load histories, the training data was otd by considering three different

discretization levels: 5, 10, and 20 rings. Wiistnomenclature, the corrected crack
front corresponds to an infinite number of ringsince the using the surrogate model to
predict at infinity is not feasible, the reciproadlthe number of rings was used for the
training of the model so that the value correspogdo the corrected crack front is zero.
The surrogate model was constructed using the 42ntrining points from the temporal

demonstration and is presented in Figure 3.10Figure 3.11, it can be seen that the

error in crack growth prediction caused by spatiatretization is less significant that the

error due to temporal discretization.
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Figure 3.10: Spatial discretization surrogate model

Figure 3.11: Crack growth predictions consideripgtsl discretization

41



Finally, the combined effect of both spatial aethporal discretization can be
considered. For each block of the training loastdries, the training data was obtained
by considering three different discretization level)5 rings and 1 block af cycles,
2)10 rings and 2 blocks a2 cycles, and 3)20 rings and 4 blocksdét cycles. The
corrected crack front corresponds to a spatialluéisa of infinite rings and a temporal
resolution ofd blocks of 1 cycle. Similar to the previous twonumstrations, the 12
training data points are used to construct theogate model which is presented in Figure
3.12. The corrected crack front curves are contpagainst the uncorrected predictions

for the verification load history in Figure 3.13.

Figure 3.12: Spatiotemporal discretization surtegaodel
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Figure 3.13: Crack growth predictions considerinoghbined spatiotemporal
discretization

3.6 Conclusion

An approach was proposed for the constructioruobgate models of non-planar
cracks for use in crack growth analyses for lifediction and uncertainty quantification.
Development of this methodology is necessitatedh®y demand for computationally
cheap albeit reasonably accurate estimates of ayemkth for failure prognosis. The
proposed method is illustrated using a cylindrm@inponent that is similar to rotorcraft
masts.

A non-parametric representation of the crack frastemployed that allows for
the development of surrogate models which modehtireplanar crack growth kinetics
as the kinetics of freely deformable space curdé® principal steps of the proposed

method include representation of crack fronts ifdix@d dimension, dimensionality
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reduction, and modeling of non-linear kinetics. Then-parameterized crack
representation is then employed to model the effetspatial and temporal discretization
in 3-D finite element analysis of non-planar cragkbwth by modeling both the block
estimates of the corrected fronts and the kinetiasrack growth in the low dimensional
crack representation space. The proposed methediustrated using data from FEA
simulations of non-planar crack growth under vdaamplitude variable duration multi-

axial loading.
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CHAPTER 4

IDENTIFICATION OF ERRORS IN FATIGUE EXPERIMENTATION  AND

BAYESIAN MODEL PARAMETER CALIBRATION

4.1 Introduction

Several models have been developed to predict goraggagation in a given
mechanical component. Many of these models hawad undergone treatments to
understand how uncertainty from the input paramseteasin be passed through to
determine a realistic distribution for the preditt@ack growth increment [32]. Due to
its simplicity and versatility, the Paris law cragiowth model [26] is the focus of several
such studies. Paris law is an effective tool tteat determine a crack growth raté* (/
U ) for a given material and stress intensity factmmge. The stress intensity factor
range T: ) is determined based on the geometry of the coemtothe initial flaw size,
and the applied loading. The Paris law relatesetmarameters as:
(27)
where and are material constants that can be obtained froysipal experiments.
Typically when uncertainty is considered in theigaé crack growth process, it is
collected within the material propertiesand

Basic guidelines for experimental error reductamd measurement are provided

by the ASTM [33], but in general, experimental utamty is usually quantified using

data from multiple specimens. Using that approdbhb, uncertainty in the measured
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quantity, be it material properties or crack growdtes, is attributed to variability across
the multiple tested specimens [34].

The methodology presented here proposes a techniging Bayesian model
parameter calibration to quantify uncertainty inteni@al properties as well as sources of
error in the experimentation. The Bayesian modelameter calibration technique
utilized in this chapter is based on the Kennedy @&Hagan (KOH) framework [35].
The KOH framework was developed for the purposeaibrating computer models
under multiple sources of uncertainty. The framdwiacludes a discrepancy term in
order to account for the difference between theehpcediction and observed data. The
discrepancy is an important parameter in calibratbecause without its inclusion, the
calibration may provide inaccurate distributionstfte model parameters. The need for a
proper understanding of this “discrepancy termdudlined in [36].

By attributing the uncertainty to a variety of smes, a more realistic
understanding of the uncertainty in the materiabpeeters of intent can be achieved.
Such an approach also yields some insight into wiegtsures can be taken to reduce the
uncertainty in the crack growth model's predictioome sources of uncertainty are
irreducible, such as the natural variability in erél properties such & andm. The
reducible uncertainty sources are various measuremneerors and the errors in
experimental load application. The calibration e#so be used to demonstrate which of
these sources has the largest effect on the cragltly prediction uncertainty.

It is important to have a complete understandihghe experimental process
before the sources of uncertainty can be identifigi@asurement technique and choice of

measurement quantity affect the errors in testpseneasurement acquisition, and data
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analysis [37]. In the literature, Beretta and Muamrai [38] investigated the estimation of
extreme defect size for suitable fatigue strengédistion. Some known contributors to
experimental uncertainty are defects in the mdtg38] and improper load and
displacement measurement [40].

In this chapter, compact tension fatigue experisievill be used to evaluate the
material properties and to be used in a Paris law fatigue crack growttdigteon.
The individual sources of uncertainty in the faggexperiments will be identified. The
Bayesian model parameter calibration will then leefggmed to estimate the posterior

probability density functions of the model paramgte

4.2 Experimental setup

The material used for the experimental testinggméed here is Aluminum 7075
due to its common application in the aircraft inmys[41]. The compact tension
specimens used for the testing are designed inr@daocce with ASTM E 647-08. The
yield strength of Aluminum 7075 is 69,000 psi (4viPa). A sample photo of one the
specimens is shown in Figure 4.1. A V-shaped n@édchhachined into the specimen
which is further sharpened using a razor. A thedaof ¥2” along with a length of 2.5”
and a width of 2.4” are the geometric parameteesl tisr these specimens. The diameter
of 0.5” (with an acceptable pin-to-hole clearane@&ps used for the gripping holes. The
pre-crack has a minimum length of 0.125” for eapbcimen as prescribed in ASTM E
647-08. Twelve specimens are tested for the purpbsepeatability. Clevis grips are
designed in accordance with ASTM E 647-08 and aexluo mount the specimens. A

schematic diagram of the test assembly showingteeis grips and the compact tension
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specimen is shown in Figure 4.2. An MTS 810 testhree is used for the mechanical
testing of the specimens. The experimental parasetieich determine the fatigue crack
growth rate include loading amplitude (as a pemgatof yield strength of aluminum),
nature of applied stress and choice of stress-titodes. The nature of the applied stress
can be axial, flexural or torsional or a combinatiof these modes. This experiment
considers only axial stresses. The commonly used thodes include reversed constant
amplitude, repeated constant amplitude and randgeling. In order to reduce the
number of sources of experimental uncertainty peaged constant amplitude stress-time
mode is chosen over random cycling. The load wasied in the form of displacements
as it is easier to control than applying forceshe Tspecimen is subjected to fatigue
loading until failure. In order to capture cracktiation, crack propagation and final
failure, an imaging setup is used. The crack graa#tla function of number of cycles is

determined using the imaging setup.

Figure 4.1: Compact tension specimen composed @ @lminum

48



Figure 4.2: Schematic of experiment assgmbly: T@ds:grips are shown holding the
compact tension specimen.

The imaging set-up consists of a digital singlesleeflex (SLR) camera, two
infrared (IR) light emitting diodes (LEDs) and agn screen to capture the images. The
IR LEDs are used to remotely trigger the digitameaa to capture images at regular
intervals of time. This imaging is carried out Urhe failure of the compact tension
specimen. The crack growth is measured from thages using digital image

processing.

4.3 Sources of error in fatigue experiments
The sources of error in fatigue experiments catroadly categorized into two

types: pre-test errors and measurement errorsteBrerrors are those that are inherently
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present in the system such as material propegesmetry of the test specimen, load
alignment, etc. The measurement errors are thegeaffect the observation of the data
such as imaging errors, machine calibration, @fte errors in the experimental outcome
caused by material defects, specimen geometry aack dip sharpness have been
discussed in detail in [39] and are not considenetthe work presented here. Since no
guantitative data from the experimentation was iobthfor these parameters they have
been excluded from the work presented here. A metaled experimentation procedure
could be adopted to quantify these identified maacounted for sources of uncertainty.

One significant source of error that was identifauring the experimental study
was alignment error. Alignment errors include esrdue to specimen alignment, fixture
to specimen contact friction and gripping pressiisalignment of the specimen to the
fixture and/or fixture to the grips can lead to reymmetric cracking especially close to
the threshold values. The fixture and the specisteuld be centered with respect to the
loading grips in order to ensure accurate loadsfean The loading axis has to coincide
with the central axis of the specimen in order nswge that the load transferred to the
specimen is indeed the load measured. In the ddadgue experiments, the fixture must
be designed to allow for smooth motion without tfon. It is important to choose
materials for the fixture that transfer load withondergoing fatigue damage themselves.
A suitable gripping pressure (5000 psi) was chdegirevent damage to the fixtures and
to allow for smooth load transfer. The direct meament of alignment errors poses a
unique difficulty.

One method for quantification of the alignmenbeiis to measure the variation in

the position of specific points on the specimenirduthe testing. The variation in the
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position of a point on the specimen can be traclsidg image processing. This variation
should be vertical and there should be no horizontation. Any changes in the
horizontal direction indicate the misalignment e tspecimen. While this can be used to
track misalignment, it will not be possible to caialignment using this technique.

Misalignment in the experimental specimen can eansreased load value due to
the moments that are induced. Kandil and Dyson M2 discuss the effect of
misalignment on uniaxial low cycle fatigue speciseMisalignment in the experimental
fixture is calculated by studying the relative zontal and vertical motion of the red dots
in Figure 4.3. Images of the specimen along with tbd dots are taken at various
intervals of time. The red dots are then trackeddtrmine the center and radius of the
circular region enclosed by them. While the veftroation is due to the movement of the
specimen, the horizontal motion is due to misalignmin the loading fixture. The
boundaries of the circular dots are traced usingTMAB’s [44] image processing
capabilities as shown in Figure 4.3. The variavbthe center of the circular dot in the
X and Y direction and the variation of the radidighee red dot are measured as shown in
Figure 4.3. This graph demonstrates the relatareation of the center of the red dot at
the top left of the specimen.

From Figure 4.4, it can be seen that the variatiothe radius of the red dot
obtained by the tracking procedure is negligiblanité element analysis was
implemented to evaluate the effect that the misatignt seen in the experimentation
(variation in the X-direction) can have on the ssrentensity factor at the crack tip. The
results from this analysis indicate that the mggalient can alter the stress intensity

factor by up to 9%.
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Testing equipment calibration errors are quartifty comparing the load and
displacement data produced by the equipment usethéocurrent test vs. a standard set
of data produced by the manufacturer. It is commian with frequent use, most testing
equipment loses calibration over time. The congoariis performed in the case of the
MTS 810 machine to quantify the error in the aplan of a prescribed load. The
variation in calibration errors for axial load aagial displacement for the experiments
considered in this chapter are shown in Figure Zle charts show the variation in error

as a function of absolute displacements and loads.

Figure 4.3: Procedure for tracking red alignmernsdsing MATLAB image processing
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Figure 4.4: Dot tracking to measure position vasratVariation in the x and y directions
as well as the dot radius dimension are presented.

Figure 4.5: Calibration errors for MTS equipmentrde for both displacement-
prescribed loading (a) and force-prescribed loadare shown.

The final significant experimental error consideren this work is
imaging/observation error. In this case, imagimgprs are caused due to resolution

concerns resulting from the use of digital imagin§ince digital imaging is used to
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measure the crack size for each specimen, errerseurred due to the image quality of
each photograph. In general, this imaging errqgsgedds on the quality and proper
utilization of the imaging equipment used and tb#vgare used to process the images.
For the work presented here, an error of +/- 1@Igixs used for the imaging error in the
digital photographs. A second observation errorpissent due to the necessary
synchronization of each image with a specific laydle during the experimentation.

Since there is obviously some lag between the intagigger and the MTS software,

there is some error in this synchronization. Tiegdiency at which the load is applied is

10 Hz; therefore, the error in the cycle count/isl0 cycles.

4.4 Bayesian model parameter calibration

Consider a general model shown in Figure 4.6. mbdel is a function of inputs
(x) and model parametersf( The difference betwee@Eand x is often difficult to
determine but in this framework the model inputswill be considered to be observable
guantities (either stochastic or deterministic)lsas loading and model parameteEs,
are not observable (such as crack growth parametecsare therefore the objective of
the calibration procedure. The model output should be a quantity of the same
meaning as$y, observable physical quantity, so that a direchgarison can be made.
The error in the observation b is often represented as a zero-mean Gaussianmando
variablees.. with a variancd ... The alignment error is actually an error thatuiso
typically affect the mean value of the observedngjiyxamaking the zero-mean Gaussian
assumption incorrect, but for this analysis thgrafient error was applied to the model

prediction to maintain the assumption.
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The inputs, outputs, model parameters and vargusrs can be connected
through a directed acyclic graph known as a Bayes&work. The Bayesian network is
a collection of nodes and directed edges where e&cie represents an uncertain
parameter and the edges represent the conditionbhpility links between the nodes
[45, 46]. Bayes theorem can be used to calibreeuhknown model parameters on the

observation dat, of |, .

CE L. X
(28)

™ ES_ “_ 7 ET el T XE X% XY

P E L. NS X E L. L
(29)

where:

@& " !s. part !, =Prior PDFs ofE L.. pgr! . respectively
“ €& L. !'. x =Joint posterior PDF ¢E .. pqr! .

" E L. !, =Joint likelihood function ofE L.. pgr! .

$ x E L. ', =Probability of observing the data givén 5.. pgr! .

Figure 4.6: lllustrative diagram for general model.
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The observation data point D is a random realimatibl . The data realization can be
represented then as:

ly | . 0e35. 0, (30)

In the simplest casd,, is deterministic for given values dEand x, and | x is
deterministic for given values &f and! ... For this case of deterministig andl . ,
‘I, L. =1ifl, =e*SE and 0 elsewhere. Also,ly X |, e5. =1 if
I, 0 *5. x , and O elsewhere.’ 5. !5. is assumed to bez ! . and
evaluated ats... Based on these observations, the joint likekkhfunction of (Eand

I'5.. is derived to be:

" E L. L
N Y Iy X 1oz o0 "1 Ee' oz lz o Lo " o Ul U, Us, Us
(31)

Based on the assumptions mentioned above, theopieequation can be simplified to:

" E b !, N™ |y x Eewm. o ‘o Us
(32)

If observation data is available for multiple ingut , the formulation can be modified
to include these other observations by makénga random vector with a multivariate
Gaussian distribution and the observatibare random realizations of tie.

In the simplest case where the observation errdrtbe model discrepancy are
combined, the likelihood calculation can be simetifusing a FOSM (First order second
moment) [4] approximation &, and!, . Then, if normality is assumed, the variance

caused by, can be added to the.. by
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Py 8lg 0!y, (33)

The joint likelihood function ofEand! .. can now be written to account for these two

modifications:

" E by N
™, “&E o oz’ 'WEoc &E ' ezw lzw ¢, Ufa Uwyp U, (34)

4.5 Implementation of Bayesian calibration
The Bayesian network for the problem of concerthis chapter is presented in

Figure 4.7. The calibration parameters lare! !vqo T@ pgr© where! = is the
model form error between the model output and theah crack growth! is the error
in the observation of the cycle couh{gis the observation error in the imaging process,

and are the Paris law parametele@ (@ R @- ) is the applied load which
includes variability caused by test machine catibra and®© is the error due to the
alignment of the pins in the loading apparatus. sédations offy (the actual crack
length) are available at multiple valuesfgf, --pg ®q® ®p° H>p+2°-g*~ pgr £ (Mean
duration of loading). The prior distributions usedthe framework for the calibrated
parameters are assumed to be uninformed (uniforsiriltitions based on general
information gained during the testing process)tfar purposes of demonstration. For
most of the parameter$ (!yqg T@ pgr©) the uniform distributions are located
simply between the bounds outlined in Section 4@t the sampling of the final

parameter! . , is only limited to being a positive value so tha likelihood calculation

57



can be performed. More informed priors will be useda later demonstration to
emphasize the importance of prior knowledge on ¢hébration technique. The
likelihood function, as discussed in the previoestion and the relationship between
*« par * . is based on the Paris law crack growth model.

Eve * o0 T W (35)

*x £y 0 (36)

where is a normally distributed random variable with &an,£ , and standard
deviation,! , *q is also normally distributed with meafiyo, and standard deviation,

'vo and z.. is normally distributed with a mean of O and andtd deviation of
u!s. 0!'y., and are the Paris law parametefs, is the mean model prediction,

*« Is an experimental observatioR, is the stress intensity factor range, apdis the

model form error.

Figure 4.7: Bayes Network for CT specimen crackagno
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In typical uncertainty analyses of fatigue cradlovgh experiments, a linear
regression is performed &stU versusT: data and it is assumed that the parameters
C andm are normally distributed. In Gurney [47], it isasvn that the natural logarithm
of the parameteC is linearly related to parameterand therefore the uncertainty can be
tracked using only then parameter. While Cortie and Garrett [48] demaitstt that it is
inappropriate to constrain the values of theparameter in this manner, it remains a
simple and effective means to monitor the two patans and is therefore still
occasionally used in practice.

To demonstrate the effect that uninformed expertatean can have on the Paris
parameters, distributions for Paris law paramdtesare assumed from literature values
[49] are shown in Figure 4.9 and then comparedh® dalibrated values using the
proposed methodology. Figure 4.8 presentddthéU vs.T: data for six of the fatigue

specimens that were tested and will subsequentlisbd for calibration.

Figure 4.8.U* /U vsU: plot for CT specimens.
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Figure 4.9: Prior Distributions of and parameters

Figure 4.10 shows the posterior distributionstf@ and parameters when the
simplest Bayesian calibration approach is employ@ddirect comparison of these two
sets of distributions is useful. This is becalmedistributions of the parameters found in
Figure 4.10 are conditioned upon the results of ¢hkbration of all of the other
parameters that were calibrated during the analy&sen if the distributions are not
directly comparable, it is still important to ndtee shape and location of the distributions
in Figure 4.10 and how they differ from those igue 4.9. One particular item of note
is the posterior distribution of parameteinn Figure 4.10a and its seemingly lognormal

form.
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Figure 4.10: Posterior distributions ofand parameters calibrated using the Bayesian
model parameter calibration technique.

The posterior distributions for the other paransetdrat were calibrated are
displayed in Figure 4.11. Some of these distrdngido not possess a definitive shape
which could be caused by two issues. Once issuld dme that the problem is under-
constrained (which is true in this instance) orltkelihood calculation is not particularly
sensitive to the parameter in question meaning a@sathe parameter is sampled, the
changes in its value do not significantly affece tikelihood calculation. Since it is
known that the problem is under-constrained in tdase, that issue will be addressed
now. The first step towards a more constrained@lon is the use of more informed

priors.
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Figure 4.11: Posterior distributions for other bedted parameters

To further illustrate this point, a more completalibration analysis was
performed. This new analysis utilized more infodhmiors and a discrepancy term. A
normal distribution was used as the prior distifrutfor the parameters and- which
are the primary focus of this research. The pdistributions shown in Figure 4.9 were
used this time. The discrepancy term, as discuatsgrkat length in [35], is necessary to
insure that the uncertainty in the posterior disttions of the parameters is not combined
with the model form error incurred through the osan imperfect model. The results of
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this refined model with more informed priors ané tidded discrepancy term are shown

in Figures 4.12 and 4.13.

Model Parameter C Model Parameter m

Figure 4.12: Posterior distributionsofand- parameters calibrated using the refined
Bayesian model parameter calibration technique.

63



Figure 4.13: Posterior distributions for other bedted parameters

4.6 Conclusion

A framework was developed in this chapter to agpipwledge of uncertainty
sources present in fatigue crack growth experintemaoward the quantification of the
uncertainty in the parameters of a crack growth @hodwo material parameter§,and
m, are used in the Paris law crack growth modelragliot a crack growth rate given a
stress intensity factor range. Typically the valuend the uncertainty about said values,
for these material constants are found using atimegression analysis. The results

presented in this chapter show that this reporteremainty in the material properties is
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not justifiable considering that some of the urmety is actually coming from other
sources than the material itself. The methodolpggsented here used a Bayesian
calibration technigue to compare observation daainst model prediction that is
affected by several model parameters and error sternThis technique attributes
uncertainty to all of the calibrated model parametather than jus€C andm. A
comparison of the material property distributiorsurfd via linear regression and
Bayesian calibration shows that not only is theeutainty reduced but the distribution
type and calibrated mean parameter values arerdlitfe It was shown that error terms
can be calibrated as well. The information gaifrech the calibration of the error terms
can be used to further improve the analysis by roeteng which parameters are
contributing the most uncertainty to the experiraéoh results. It can also be used to
determine which variables have negligible effecttua likelihood function and therefore
the experimentation as a whole. This informatioan cbe used to refine the
experimentation and to determine the most efficreaeains to distribute a budget aimed at

minimizing the experimental uncertainty.
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CHAPTER 5

MODEL VALIDATION

5.1 Introduction

In Chapter 1l, a computationally efficient two-stagapproach for planar
approximation of non-planar crack growth was depetb The proposed methodology
used a parameterized representation of the noraptaack, and employed two surrogate
models: the first surrogate model is trained ustRANC3D based simulations of non-
planar fatigue crack growth to capture the relaiop between the applied load history
and equivalent planar crack orientation. The secsumdogate model is trained using
planar crack growth simulation to calculate theesdrintensity factor as a function of
crack size, crack orientation, and load magnitwdei$e in planar crack growth analysis.

Individual predictions of the two surrogate modeds, well as their combined
predictions were verified for accuracy using FRANICBased finite element simulations
of non-planar fatigue crack growth in the rotortmrafst example that was discussed in
Chapter Ill. The verified two-stage approach wasnt used to conduct probabilistic
analyses designed to quantify the effects of varisaurces of uncertainty in crack
growth, including natural variability in loadingqitial crack size, and model uncertainty
during the crack growth analysis. In Chapter lthathodology was presented to account
for numerical errors caused by spatial and temptisgiretizations. The work presented
in that chapter will be expanded in this chaptebeoutilized for the equivalent planar

model. The same discretization variables that weesl to control the resolution of the

66



temporal and spatial meshes in Chapter 11l wiluked once again. Chapter IV presented
the calibration of fatigue crack growth model paetens using experimental data when
experimental error is considered. The work in tbhapter was performed using
aluminum samples and since the material for thercoaft mast problem is 4340 steel,
this is the material used in the discussion preseheére.

In this chapter, the focus of the work presented ke on validation of the
equivalent planar crack growth (EPCG) model usiagdsian hypothesis testing. In this
study, multiple sets of experimental data were lalpde to be used in the model
validation process. This chapter strives to dermates how multiple sources of
information can be linked via a Bayes network tovile complete model validation.
The EPCG model employed in this work will be trainesing data that has been
corrected for discretization error and the modebpeeters will be calibrated using the

Bayesian parameter calibration technique that wasegmted in Chapter IV.

5.2 Discretization Error in EPCG Model
A detailed discussion on discretization errors @neésn fatigue crack growth

modeling is presented in Chapter Il but a briemsuary will be provided here for
clarity. Since most modern fatigue crack growthlgses rely on finite element models
there is almost always some inherent spatial diget@n error present in the results.
This numerical error is proportional to the refirearh of the spatial mesh used in the
finite element solver. In Chapter Ill, a Gaussmmacess model was used to estimate the
spatial discretization error for entire crack fmntThe model was trained by gathering

crack growth results for varying levels of finitement mesh refinement. The idea being
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that an infinitely refined mesh will eliminate tlspatial discretization error. Since an
infinite mesh is impossible, extrapolation was perfed to predict the result at this
infinite refinement.

The Gaussian process model is not the only meansqgtiantification of
discretization error however. A much simpler taghe was presented by Richards [50]
using the Richardson extrapolation technique thatised to determine the converged
solution of a sequence of refinements. Using Rat$@n extrapolation, the discretization

can be calculated as:

1 8 pa »
7P

Y (37)

where and are the solutions for the coarsest mesh and meedtfmesh respectively,
¥is the mesh refinement ratio, afids the order of convergence. If the paramegers
and ¢ are used to denote the corresponding mesh sizes arid , then the mesh

refinement ratio is simply, Y¢ . The order of convergence can then be calcuksed

AZALE A,

Ay AAo
“REC) (38)

where  is the result of the finest mesh test and therothgables are the sames as was
defined above.

It should be noted that although the Richardsotrapwlation technique for
discretization error quantification is conveniahts not without some serious drawbacks.

The main drawback to the technique is the listrdega required for its use. The first
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such criterion is the requirement of a uniform mesimement. While this requirement
may seem rather insignificant, the difficulty udyak increased because of the second
requirement which is that the mesh tests need feldermed in the convergent region of
the sequence. Since it is difficult to determinleeve exactly the “convergent region”
lies, the limit on the mesh tests is usually ergdrby computational limits. In the spatial
discretization problem for example, the convergepamt is infinity. Since mesh tests
cannot be performed at infinity, they are usualgrfprmed at a level that is near the
computational limits of the finite element solveiThe third criterion for Richardson
extrapolation is that the mesh test results be toomcally increasing or decreasing. It
was this requirement that led to the use of thes§an process model in the work
presented in Chapter Ill. Since the crack frontghiat chapter were represented in a
latent space, the mesh tests did not necessaatlytte monotonic behavior in the results.
The Gaussian process modeling technique is capéilandling these inconsistencies in
the data but the Richardson extrapolation is not.

The EPCG model presented in this chapter does ewpiire the latent space
representation of the crack fronts and is therefoempler case for the discretization
error quantification. Since the results of the meests for the EPCG model abide by the
Richardson criteria, the Richardson extrapolatieehhique will be employed for

discretization error quantification in this chapter

5.3 Experimental Data from Bell Helicopter TextronInc.
Bell Helicopter Textron Inc. provided three sowad experimental data for the

use of model calibration and validation in thisdgtu Middle tension (MT) tests were
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supplied for the purpose of model calibration. ééhsets of MT test data were supplied
with were from 4340 steel specimens and a load @ti0.05. Another set of material

level experimental data, KB-bar tests, was als@kegh and was originally to be used for
model calibration as well. The main differencevwsstn the KB-bar tests and the MT
tests was that the Kb-bar tests possessed a surfade rather than a through crack like
the MT specimens. The results of these tests waegaally intended to calibrate trok

parameter necessary for theg calculation which will be discussed in Section, 54t

the: gestress intensity factors were near zero whichtdean insignificand calculation.
Since the rotorcraft masts were subjected to naxigd loading, they provided good
calibration results for thé parameter

The rotorcraft mast specimens were tested undenstant amplitude load with
the same load ratio of 0.05. Four specimens wested but only two yielded usable
results. Of the two data sets, one was used foefreadibration and the second was used
for model validation. Since such a small dataxses available, the calibration/validation
was performed twice. Each time the procedure veafopned a different mast specimen
data set was held out for the validation purposed #he other one was used for
calibration. The results presented in Sectionsafdl5.5 will be the average of these two

iterations.

5.4 Experimental testing and model parameter calibation
The equivalent stress intensity factors used tio ttge original surrogate models
for the EPCG model were based on FRANC3D'’s estimatehich compute the

equivalent stress intensity factor as only a fuorcof the maximum Kvalues, which is
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not appropriate for use in applications that ineadvmulti-axial loading scenario. As seen
in Figure 5.1, the surrogate model trained usindRR3D’s estimate of the equivalent
stress intensity factors is conservative in itsneste of crack growth when compared to

the experimental data.

B

Figure 5.1. Crack Length Validation Comparison

In order to incorporate the characteristics of thllee failure modes, a new
methodology to compute the equivalent stress iitterfactors has been adopted.
Towards this, the three SIF values, (K, and K;) at each training location are obtained
along each crack front using FRANC3D. The equivalstress intensity factor is

calculated as:

EVi

Eree =SE(e 000301200 S (39)
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where:A,B, ands are material properties
I( & 1( geandi( ggeare the SIFs transformed to the characteristsstplane

I( - is the hydrostatic stress term

The derivation of this formula can be found in land Mahadevan [51]. The
method proposed by [51] requires estimation of epaters, which is the ratio of a
particular material’'s (4340 steel in this case) Mlddand Mode Il threshold stress

intensity factors, which are material propertied aan be obtained experimentally.

Since a wide range of values (1.09 — 2.50) fordtjparameter are available in the
literature [52, 53], the parameter must be calddtan order to determine a usable value.

To perform the calibration, the following equatisrused [51]:

SSE( 0:Ehso0, E( g (40)

The above equation is appropriate for use in a doack growth rate situation.
Certain simplifications, such @ = s and A = 9(¢ — 1) are made based on the
assumption of the presence of tensile dominatedinga The K, values for each
material level experiment were acquired duringakperiment by Bell Helicopter. Using
these K, values and the SIF values computed by FRANC3D faonfrEA model of the
rotorcraft mast, the “s” parameter can be deterthin@he Bayesian model parameter

calibration was once again employed for this cation.
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The procedure outlined for model parameter calidnatin Chapter IV is
employed once again here. The goal once agam @btain the parametersand in
the Paris law crack growth equation plus the nevarpaterd is also calibrated. The
values of parameters and calculated here are different than those calidrate
chapter IV since their calibration is based on expental testing of 4340 steel
specimens instead of aluminum.

Another major difference in the calibration ingtghapter versus the calibration
presented in Chapter 4 is that multiple data seim fdifferent sources are present.
Experimental data from Bell Helicopter is availalide material level (middle-tension-
MT) tests and for component level (rotorcraft massts. The MT data from Bell is used
first for and parameter calibration. The priors used for thiial calibration were
based on literature values of and with distributions 1B PN 18°Q  and

a™  "a_ respectively. The posteriors from this calibratare then fed to the next
stage of calibration which utilizes data from Ceamens in which experimental errors
are also addressed.

The next stage of the calibration comes from comertsion experimental data
as was presented in Chapter IV for aluminum. Ttgeemental setup was the same for
the 4340 steel specimens as was described in CGhégtdor the aluminum test
specimens. The posterior distributions for theand parameters are then past to the
calibration using the mast data from Bell Helicoptextron Inc.

Since the component level test involves bending) tansional loading, all three
modes of fracture must be considered instead of thwel first mode which is the case for

most material level tests. Since all three fraztmodes are present, the component level
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tests are the best source for calibration ofdhmarameter that is required for theg
calculation that was discussed previously. The GR@odel is a function of the
parameter as well as the Paris coefficientand and is therefore used for the
calibration. The prior distributions for the and parameters are the posterior
distributions from the previous calibration and fiver for thed parameter is based on
literature values [52] and is1* O™ A1 . Similar to the previous step, the prior
distributions for the and parameters are the posterior distributions resyfiiom the
previously performed CT calibration.

Figure 5.2 displays the Bayes network for incorporaof the multiple sources of
data available for model validation in this projecthe actual implementation of this
network was described above and is shown in Figu8e The order in which these
calibrations are performed can be justified by stigating the likelihood calculation for

the network presented in Figure 5.2:

’ d @ X9 @x OYei d @XC) (41)

The associative property allows that mathematic#llggoesn’t matter in which order the
calibrations are performed. The implementatioreoxchosen for this study was done so
that the mast calibration was performed last dugstsimilarity to the validation data.
The CT calibration was chosen to be performed #fieMT tests due to its consideration
of experimental errors. The posterior distributidios the calibrated parameters are
presented in Figure 5.4. Samples are then taken fhese distributions to evaluate the

EPCG model used in the model validation presemtedd next section of this chapter.
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Figure 5.2: Bayes network for calibration and vatfidn when multiple information
sources are available

Figure 5.3: Implementation of calibration procedure
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Figure 5.4: Posterior Distributions of Calibrates&meters

5.5 Bayesian Model Validation

Bayesian hypothesis testing was the quantitativielatgon technique chosen to
compare the model prediction with experimental ltesuBayesian hypothesis testing is
used to compare multiple models so as to judge lwhiodel's prediction most closely
resembles the experimental results. The data geavoy Bell for the rotorcraft mast was
deterministic but in order to provide a more rdalisepresentation of real world data, an

observation error of 0.025 inches was assumed.

In the case of model validation, the posterior phulities of the two hypotheses

compared using the Bayesian method a@(N)Q(")'——nxr—°®®ix»-i_x and
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@O O--xr-° ®Z ®g+x»-+ x . The probabilities of observing the data are then
@x Og and@x Oy which can also be referred to as likeliho@<), andO O .

The Bayes factor is simply the ratio of these tikelihoods.

Rebba [54] showed that this Bayes factor that cofrem the hypothesis testing
can be used to provide a measure of model confedenthe confidence measure is

calculated as:

B Uy CYm;e YYPIZ!
B" UgUB" U UCYz;e YYDIZ!

jUube U/ >UD/+b (42)

Another model validation technique will be presenie Chapter VI of this thesis that

employs a reliability-based metric but that will iecussed later.

A visual comparison of the physical experiment/mt&gde model results for one
of the mast specimens is presented in Figures bHe figure provides two samples of
model prediction results. The first model prediotiset is based on the EPCG model
before any correction was provided for discretamatierror and before the Paris
parameters were calibrated. The second set ofgtieed results is based on a revised
EPCG model which has been adjusted to compensatisitretization errors and which
uses model parameters that were quantified usimg Bhyesian model parameter

calibration technique.
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Figure 5.5: Experimental Data vs. Model Prediction

A more quantitative validation investigation usiBgyesian Hypothesis testing is
presented in Tables 5.1 and 5.2. The tables shewalidation results for both models
and show that the model is improved by the additbdrdiscretization error and the
calibration of the Paris law parameters. The @slare an average of the validation
results for the two specimens used, where in ease one mast was used for model

calibration and the other was used for validation.
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Table 5.1: Validation results for unadjusted prédic model

! "#$ "#

Table 5.2: Validation results for prediction modéker parameter calibration and
discretization error

%
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5.6 Conclusion
This chapter presented the validation of the edentglanar crack growth model.

The two surrogate models employed in equivalenhaiaanalysis were trained using
stress intensity factors acquired via FRANC3D dreldrack propagation was performed
by use of Paris law. In the original approximatitme equivalent stress intensity factor
was determined solely based op A new: ¢ calculation technique is then employed
to account for all three modes of failure. Sinwe:tzg calculation required an additional
material property, it along with the Paris law paeders, were calibrated using
experimental data. The calibration methodology gmé=d here provided a thorough
means by which multiple sources of information barutilized to provide a detailed and

robust model parameter calibration and then a medexant model validation.

The effect of the discretization error and the niqueameter calibration on the
predictive model was also investigated. The adpishodel provided more accurate
results that are closer to the experimental roédr@pecimen results provided by Bell

Helicopter as can be witnessed in Figure 5.5 andefab.1 and 5.2.
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CHAPTER 6

STRUCTURAL HEALTH MONITORING AND FATIGUE DAMAGE
PROGNOSIS FOR CONDITION BASED MAINTENANCE INSPECTIO N

SCHEDULING

6.1 Introduction

The previous chapters of this thesis focused erutitertainty quantification as it
pertains to three dimensional crack growth mode#ind experimentation. The focus of
this chapter is to use uncertainty quantificatieauits towards risk management. Until
recently, most critical components in aircraft weygerated on a rigid safe-life basis.
That is, these components were immediately reméreed service as soon as any type of
fatigue damage was observed during routine in @estof the craft. The reason for
operating under this condition is due to the comipfeand uncertainty in service
environments for these components. As more relsdgarcompleted in understanding
these uncertainties and as computational powereases, alleviating the modeling
challenges of complex systems, the rigidity of Haée-life condition can begin to be
relaxed. If the models for these components arendoto be more reliable, the
components can continue to remain operational ag ks certain structural health
monitoring (SHM) and fatigue damage prognosis (FB#hniques are followed. It
should be noted here that SHM and FDP are not émitigr connected [55], but the
integration of these two technologies has alreaglgnbpresented in the literature [56];

however, the goal of this chapter is to presenteéhodology for using these techniques
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to determine an efficient and safe condition-basedihtenance (CBM) schedule for an
in-service rotorcraft mast.

Condition-based maintenance is a method of optymailizing maintenance time
and equipment so as to reduce costs while maingaian adequate level of reliability of
a component. The motivation behind the developnoér@BM techniques [57] was to
reduce downtime and the unnecessary replacememntowiponents that still have
significant remaining life but may have been irnvgsr longer than the safe-life tolerance.

Numerous tools and methodologies can be found énliterature for fatigue
reliability analysis and inspection updating [58, B0, 61]. Garbatov and Soares [62]
proposed a method of optimized inspection planrorgfloating structures, in which
inspection planning was treated as an optimizghi@blem under reliability constraints.
Zhang and Mahadevan [63] proposed a Bayesian agiproa reliability updating and
inspection decision-making with respect to corrodimtigue incorporating the reliability
of the NDI (non-destructive inspection) techniquespection data, and model.
McLemore [64] focused on using reliability-basesggaction optimization (RBIO) to
determine inspection fidelity based on the intagratof uncertainty sources in a
Bayesian network. In that work, the decision aspection fidelity was made with
respect to the component’s entire life cycle. @ragor deficiency in this methodology is
that in a DT approach the final life of the compaines not known when the component
is initially placed in service. This chapter exdenMcLemore’s work to expand the
inspection fidelity choice to a mission-by-missischeduling decision making process

rather than a total component life methodology Whi@s presented there.
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In the first few sections of this chapter, the focwill be directed toward the
estimation of a proper inspection interval thatlwdad to an efficient yet safe
maintenance schedule for aircraft structures. Hai end, two alternative methods to
determine an inspection interval on which to eviuhe fatigue damage present in a
rotorcraft mast will be presented. In order tofpen either of these interval estimation
techniques, it is necessary to have a model capbteedicting crack growth from a
given initial flaw and loading scenario. In thisagiter, the equivalent planar crack growth
model that was discussed in detail in Chapter Il e utilized. For clarity a brief
summary of the methodology behind the equivalemingl crack growth model is
presented in the following paragraph.

The computationally efficient two-stage approach itanar approximation of
non-planar crack growth uses a parameterized rejptason of the non-planar crack, and
employs two surrogate models. The first surrogatelel is trained using FRANC3D
[17] based simulations of non-planar fatigue crgc&wth to capture the relationship
between the applied load history and equivalemagrla@rack orientation. This model is
used to estimate the final crack orientation sa ¢hplanar crack growth model can be
utilized to approximate the actual non-planar crackhe second surrogate model is
trained using planar crack growth simulation tocakdte the stress intensity factor as a
function of crack size, crack orientation, and lgadgnitude for use in planar crack
growth analysis. The orientation and stress intyrfactors that are calculated from
these two models can then be passed through amyeserack growth equation such as
Paris Law [26] to estimate the non-planar crackopgation for a given load amplitude

and duration.
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Since both methods for inspection interval estioragpresented in this chapter
involve the use of some reliability measure in phedictive model that is to be used, it is
necessary to have some rotorcraft masts that seevesd strictly for the purpose of model
validation. A reliability-based model validationetnic will be used in this chapter to
determine the reliability of the crack growth maderhe reliability metric is a simple
measure of the probability that the crack growthded@rediction lies with a specified
error interval around the actual crack size atesgnibed time step. The first inspection
interval estimation method is essentially just tinge required for the model’s reliability
to fall below a certain value. The second methaddetermining a safe and efficient
inspection interval is slightly more involved. Amage-tolerance approach is utilized for
the second method. The damage tolerance approgaloys the EPCG model to predict
the point at which the predicted crack growth edsea predetermined critical value.
Once this critical crack length barrier is pasdeldcomponent should be inspected to see
if a critical flaw has actually occurred.

After the inspection takes place, it is importanutilize the data that is obtained
during the inspection. The data gathered fromirtepection can be used to improve the
model that is being used from the crack growth jotemh. Bayesian model updating
[21] is an appropriate technique to be used far thsk and will be also be presented. A
numerical example, as mentioned earlier, will dsoprovided for improved clarity of
the techniques presented and to illustrate theatifeamework for the procedure.

The latter portion of this chapter is focused oneapansion to the inspection
interval estimation to include the concept of irdfm fidelity. The determination of the

inspection fidelity will be performed by implememgi a detailed simulation model. The
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model will be used to emulate the actual crack gnawat is occurring or going to occur
in the actual component. In this way, the model lba used to estimate the effect that
different types of inspections can have on the reimg life of the component.

The estimate of remaining life will vary dependimig the amount, and quality, of
information gained during the inspection. In theoa higher fidelity inspection will
provide more information about the current statthefcomponent and will therefore lead
to the digital model predicting a longer componéfe after the inspection. The
knowledge gained from the model’s estimation wélused to add the inspection fidelity

choice to the inspection schedule planning discusséier.

6.2 Types of non-destructive testing

In the area of SHM of fatigue fracture, there mx@ny options available for non-
destructive component inspection [65]. Two typésngpection are considered here:
visual inspection and ultrasonic spectroscopy.

The visual inspection is the easiest and most usgie of NDT to perform. A
visual inspection is simply a trained inspectiooht@cian simply visually analyzing the
component to attempt to identify any fatigue damag®Vhile there are definite
advantages (low cost, ease of use) to this inggedechnique, it is also somewhat
imprecise. There is a large range of error astegtiaith this inspection technique. The
visual inspection technique can also only be usanddasure surface cracks. If the crack
depth is of concern then the usage of this teclmnigjgeverely limited.

The second inspection method to focus on is thhaadhic spectroscopy [66]. Ultrasonic

tests (UT) utilize the acoustic properties of themponent in question to assess the
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presence of some type of flaw. The advantage ofoldr visual inspection is that UT
allows the user to see what is happening underribatsurface of the component. This
is a useful tool for determining the depth of knogvacks or for the discovery of hidden
cracks that may not be visible on the surface efdabmponent. Ultrasonic spectroscopy
is also commonly used to assess corrosion damélge.drawbacks to UT are that while
the inspection equipment itself is not expensivee tiser must be a highly trained
technician to properly interpret the results anddcate the machine.

It is helpful to remember that the cost of a paltc inspection is not only
measured by the direct cost of the equipment uesegetform the inspection. For
instance, a visual inspection can typically be @enked while the component is not only
still installed in the system, but many times whiee system is in use. Other more
advanced systems may require the system to be tanipagemoved from service so the
component of interest can be removed and inspectda: system downtime is often a

greater cost than the actual inspection.

6.3 Reliability-based model validation metric

The idea behind the reliability-based validatioetnt [54] is quite simple. Given
a desired error tolerance, what is the probabihigt the difference between the model
prediction and the experimental data is within ihégrval. One drawback to validation
metrics is that they all possess some subjectiaity] this metric is no exception. The
subjectivity for a reliability-based validation mietis in the error tolerance that must be

chosen. In the case of fatigue crack propagationitoring, it can be assumed that this
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error interval is simply the detectability limit {6 of the inspection process. By using
this value the subjectivity in the model validatisrminimized.

The utility of the reliability-based validation nnigt is that a probability limitg,
can be added to the formulationRP(< D < )| c) to ensure that the model prediction
is rejected below a specified reliability levelhélrejection of model prediction below a
specified reliability (or model “confidence”) is efsil in crack growth monitoring
because the inspection interval can be easily mted from this confidence cut-off.
Another benefit of the metric is the ability to sther noise in the experimental data as
well as the uncertainty in the model predictiorf. nbrmality is assumed, the model

reliability can be calculated then as

aPwaPa_"' apPoaPa_',
Y 8 B=a R8 fSP:a (43)
“ _))U éé » “ _))U éé »

where is the acceptable error range (the detectabiltyt in this case)£ is the mean
experimental observatiofi, is the mean model prediction, is the standard deviation
of the model prediction anid, is the observation noise.

Once the validation of a series of test specimengerformed, a quantitative
measurement of the model reliability is known. ekiss of predictions can be made with
increasing duration length to establish a religpiturve for the model. It stands to
reason that an increase in the duration of theigtred will lead to a decrease in the
model reliability. If this is the case, the religly will eventually reach a threshold value
beyond which the model’s prediction is no longestworthy and should not be used for

maintenance decision making.
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6.4 Estimation of detectability limit

In the previous section, the detectability limirichg inspection was mentioned
and was utilized as the error interval for the dation process. Since damage inspection
is a critical aspect of aircraft component mainterea it has led to the development of
many different inspection techniques that are minsthe industry. Obviously, the most
useful of these techniques are non-destructiveectsgn (NDI) techniques since they do
not damage the component that is still in servighin a fleet but also provide useful
information about the component’s airworthiness.[68Il NDI techniques have varying
degrees of inspection fidelity characterized bybaimlity of detection and detectability
limit. The probability of detection (POD) is theopability of a crack that is present
being detected by the inspection technique. Thectbility limit is the minimum size
of flaw that can be detected by the inspectionrigpre. In this chapter, a statistical
approach is taken to determine the POD for a gdetactability limit. The probability of
detecting a crack of size is then computed by:

ausY,

*. 8%z 0 ¢*.'  -210-615 Ty (44)

€)= Tg‘ 17Ul (45)

where the symbd represented the standard normal cumulative defwsigtion,B%a is

a Gaussian error functioegand¢ are model parameters based on the chosen ingpectio
fidelity, and *. represents crack size. Once the model paramatersletermined, an
acceptable POD can be selected. Based on that WDI2, the estimation of the
detectability limit follows naturally [69] by deteining what size crack. can be

detected consistently given the selected POD.
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6.5 Damage tolerance methodology

Since the airworthiness of rotorcraft componeasta icrucial safety issue, model
reliability alone is not enough to determine a @romspection interval. In order to
maintain a safe inspection interval, a damage aalg methodology should be used in
conjunction with model reliability.

One key component to the damage tolerance methggladothe selection of the
critical and allowable flaw sizes that determineetffer or not a component remains in
service. The critical flaw size is computed by sidering the geometry and the material
properties and preferably elastic-plastic fractanalysis so that brittle fracture, plastic
collapse, and buckling can be considered. Oncecthieal flaw size is known the
allowable flaw size can be estimated based on tainges present in the predictive
model being used and input parameters such asedpplading and material constants.
Considering all of the previously mentioned quaedit the allowable flaw size should be
relatively small when compared withe: jpya, SO that it will take a reasonable amount of
time for the crack to grow frorpaazt0 *o1ipya. Following this provision is important
to ensure that the safety of the component is miaeithn

Figures 6.1-6.3 demonstrate how a typical damatgatat inspection interval
estimation is performed. First, the model is usedgrow the crack starting with an initial
flaw size equal to the detectability limit of thespection technique to be used. The crack
is propagated to the point where it is equal toafmvable value. The component is then
inspected at ¢. T paaz- At this point, if no flaw is detected then theogedure is
repeated(Figures 6.1 & 6.2). Once a flaw has ketected, the initial flaw size is

adjusted td s.. and the inspection procedure is repeated aguré&i6.3. [70]
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Figure 6.1: Determination of inspection intervabpto actual crack being observed

Figure 6.2: Determination of inspection intervdkafirst inspection

Figure 6.3: Determination of inspection intervakaflaw has been observed
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The above approach did not consider the reliabdftyhe model. In order to provide a
more reliable and efficient methodology, the magdiability estimate can be combined
with the damage tolerance methodology for estimatibthe inspection interval. First,
the detectability limit must be estimated using &@. A POD that is reasonable for the
component in question should be used for this edttm. Once the detectability limit is
known, the reliability-based validation metric dam used to determine the confidence in
the predictive model being used. In order to penfthis validation, some components
must be reserved from the fleet for strictly valida purposes. A model confidence can
be determined for each of the reserved specimemghem averaged to give an overall
confidence in the model for the fleet. Based osséhresults, the inspection interval
based on the validation of the model can be detmthigive some confidence limit
placed on the model. As an example, if the conftéelimit is said to be 95% and the
model’s reliability drops below 95% at 32,000 loaytles, then that is the inspection
interval at which the component should be evaluatédwever this value should only be
used if it is below the value estimated by the dgendolerance methodology.
For actual implementation of this methodologyshbuld be combined with the
technique proposed in Section 6.3 using the rdifghbialidation metric. A framework
for this proposed methodology is presented in Fedgud. As can be seen in the diagram,
the procedure begins by determining whether a ikwletected or not. If a flaw is
detected then the measured crack size is usee asitihl crack for the prediction model,
but if a flaw is not detected then the detectabllinit of the inspection technique is used
as the initial crack length in the prediction mod&he model is then used to determine

when the flaw should reach a critical size and thaation is then used as the inspection
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interval for the actual component unless that domais longer than the reliability limit
for the model. If the crack size measured durhmgyihspection is at or near the critical

size, then the component should be retired; otrserwthe entire procedure will repeat.

Figure 6.4: Framework for maintenance inspectidredaling

6.6 Numerical example: inspection interval estimatin

For this example, experimental crack growth data $ix rotorcraft masts
subjected bending and torsional loading were pexvidy Bell Helicopter for the
purposes of model validation. Since no in-serviorcraft mast was available for
maintenance scheduling, it will be assumed tha¢ fof the supplied data sets are
withheld components used for model validation dreldixth component will serve as the

in-service component for which the maintenance dalivg is being determined.
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Using the reliability metric described in Sectiér8, a measure of the model
reliability is obtained from the five test specirsen This is achieved by using the
predictive model to estimate the crack growth airemeasing duration of load cycles.
The model reliability is then tracked, as can bensia Figure 6.5. The model reliability
drops below 95% at a cycle duration of 30,704 cjcteerefore, 30,704 is the largest

inspection interval for the remainder of this exdenp

Figure 6.5: Model reliability curve.

For the damage-tolerance approach to inspecti@rvialt estimation, inspection
fidelity parameters were chosen so that the POD 9% for a 0.1 inch crack. The
allowable crack length to be used in this method.Z4 inch. The EPCG model is used

to grow the crack to the 0.21 inch threshold arel dbration to arrive at this length is
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found to be 57161 cycles. Since the lower of te walues is 30704 cycles, an
inspection is to be performed at that point. Tispection found that there was a crack at

30704 cycles and that the length was 0.1537 ifidfe model results and the actual crack

growth are displayed in Figure 6.6.

Figure 6.6: Actual crack growth and initial modeégiction.

The initial crack is then set to be 0.1537 in. #mel model is once again used to
predict the duration required to reach the critftal length (22177 cycles). The second
inspection (performed 22177 cycles after the finspection) observed a crack with a
length of 0.2032 inch. The model results and ttteia crack growth between the first
and second inspections are displayed in Figure 6.7.

Following the same procedure outlined before, tispéction interval after the
second inspection is found to be 5761 cycles. fthire inspection yields an observed

actual crack length of 0.2173 inch. The model ltssand the actual crack growth
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between the second and third inspections are ¢splan Figure 6.8. Since the actual
crack length has nearly reached the allowable clecgth, the rotorcraft mast would
most likely be retired from service at this poiftor completeness, Figure 6.9 shows the
entire operation comparing the model results at ateration with the actual crack

growth.

Figure 6.7: Actual crack growth compared againstrtiodel after the®linspection

Figure 6.8: Actual crack growth compared againstrttodel after the inspection
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Figure 6.9: Maintenance inspection schedule foremisal example.

6.7 Extension to include inspection fidelity

The method for determining the fidelity of the pestion that will occur at each
maintenance interval will be based on the next imms¢ength required of the aircraft.
The fidelity of the inspection technique will datene the next inspection interval. This
value will then be compared with the length of timeeded to perform the mission that is
needed for the component to complete in that iaterlDepending on this mission length
a decision will be made as to which inspection #&hdie performed. The equivalent
planar crack growth model that was summarized icti®® 6.1 and was discussed in

detail in Chapter 2 will be used for model predinti
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To further increase the accuracy of the digitaldeis simulation results, a
Bayesian network will be employed so that informatigained from the maintenance
inspections can be used to update the model pagesne schematic of the Bayesian
network used in this scenario is presented in [Eigui0. The concept of Bayesian model
parameter calibration was presented in great det&hapter IV and will be used here to
once again calibrate the Paris law parameteend . As discussed previously, the
Bayesian framework lends itself quite well to ttyigse of problem where there are several
sources of uncertainty because it is capable afbating the uncertainty to the
appropriate causes. Since there is inherent wogrtin the observation of the data and
error in the model that is being used, it would ibappropriate to lump all of that
uncertainty in the parameters of the model. Byfgwering the calibration using the
Bayesian network, the distributions of the modebpeeters can be properly updated as
the information is gathered so as to increase theigion and accuracy of the model’s

prediction.

Figure 6.10: Bayes network for simulation model.
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6.8 Framework for implementation with inspection fdelity considerations

The framework for implementation of inspection elity to the scheduling
process begins with the determination of the finspection interval using the method
outlined in Section 6.5. At this inspection timestance, a choice must be made as to
which type of inspection should be performed, a faelity inspection (LFI) or a high
fidelity inspection (HFI). The decision variablalvbe the number of cycles required
before the second inspection is needed and thecpoedmodel is used to estimate the
value of this variable. The information gainedtla first inspection will be used to
update the initial flaw used in the prediction miodeA HFI will provide more
information making the model’s prediction more aete and the result will be a longer
inspection interval before the second inspectiamesded.

The decision can then be made as to what typespiettion fidelity should be
used at the next scheduled inspection dependinth@mmission that is needed to be
performed. Consider a case where the upcomingionider a system will require the
component of interest to undergo 7000 cycles ddifiaand two types of inspection are
considered: a LFI (e.g. visual inspection) and d (¢Fg. ultrasonic spectroscopy). The
model predicts that after the LFI another inspectll be needed in 5000 cycles but
after the HFI, the next inspection shouldn’'t bedezkfor another 10,000 cycles. In this
example, the HFI inspection should be performedasoto meet the needs of the
upcoming mission. The user should keep in minddwaw that this prediction is only an
estimation from the crack growth model. Once tigpection is physically performed the

actual next inspection interval should be deterchinseing the approached discussed in
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Section 6.5 so as to insure the safety of the systé& diagram illustrating each of the

steps in the methodology is presented in Figur#&.6.1

Figure 6.11 Framework for inclusion of inspectiafefity

6.9 Extension of numerical example to include inspéon fidelity

The numerical example presented in Section 6.6or#inued here to include
considerations for inspection fidelity. The resdtiund in that analysis will be used here.
The reliability limit found in that section of 3004 cycles will be implemented in this
example also. Since this was the first inspedinberval in that analysis, it will be used
once again. The crack growth model can now be tesddtermine the type of inspection

that should be performed at this inspection evenhere are two different inspection
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fidelities that can be chosen. The high-fideltgpection (HFI) has an observation error
of 0.005 inches and the low-fidelity inspection (Lkas an observation error of 0.04
inches. This information is used to update théahflaw size used in the prediction
model for the duration of the second inspectiorervdl. The results of inspection

scheduling analysis are presented in Table 6.1.

Table 6.1: Results of digital model simulation

&' ( )*+ %)
- + S+
0- + . US+

The decision of which inspection to implement ispendent on the type of
mission that must be performed. It is assumedtheaturation of the upcoming mission
is going to be 15,000 cycles. Since this durai®ronger than the 11,105 cycles
predicted from the LFI simulation and shorter thha 18,537 cycles yielded from the
HFI simulation, the HFI should be performed at le&t inspection.

Assuming the final specimen from the Bell Helicopdata as the component in
service, the actual inspection data is taken astarpolated result from the series of data
points provided by Bell. Per this procedure, tbeial inspected flaw growth at the initial
inspection (30,704 cycles) is taken as a uniforsatritiution between 0.1400 and 0.1500.
The results of the inspection can then be usegdate the Paris Law coefficients used in

the prediction model. The results of the Bayesipgiating are presented in Table 6.2.
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Table 6.2: Updated Paris Law parameters
Parameter| CMean CStd. Dev. mMean m Std. Dev.
Prior 3.41E-10 3.41E-11 2.9976 0.29976
Posterior | 3.41E-10 3.40E-11 3.0018 0.3274

Using these updated parameters, the predictiveehwah be used to determine
the actual inspection interval for the next missidrhe results of this analysis show that
the digital model was quite accurate in its pradiciof an inspection interval of 18,537
cycles. The inspection interval for the next nmossis actually 20,065 cycles which
means the digital model was slightly conservatiiéne procedure can then be repeated
until the predicted duration is less than the @esmission length. Once this occurs the

component should be retired.

6.10 Conclusion

The methodology presented in this chapter dematestran efficient and safe
method for the determination of maintenance inspecdnterval and fidelity level for
mechanical components in an aircraft. The proaetegins by evaluating the reliability
of the predictive model that is used for the remamof the analysis. The model
reliability limit is used as a ceiling for the irexgion interval. The ceiling insures safety
of the component because it doesn’t allow the mededliction to affect the inspection
procedure outside of its reliable range. The damaderance approach to inspection
interval determination limits the service rangewssn inspections so that the component
is not in service past the point where the modetljots that a flaw will have grown past

some tolerable limit.
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Once the initial inspection interval is determinétg prediction model was used
to evaluate what type of inspection should be peréal in order to maximize the use of
the component. Depending on the fidelity of thepection that is chosen, the duration
until the next inspection is estimated by the digmodel. That information can then be
used to decide which mission can be performed anhidhainspection type should be
chosen.

Condition-based maintenance is a means to effigi@unserve component life
and maximize their use. The procedure outlinethia chapter demonstrates how this
CBM approach can be implemented by including moelébility, fidelity and reliability

of the inspection technique, and mission needbefircraft.
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CHAPTER 7

SUMMARY AND FUTURE WORK

Traditional DT approaches to fatigue critical campnts have assumed a
deterministic damage accumulation process wherermétistic crack growth curves,
constant material properties and specific initialf sizes are used. Since uncertainty is
present at all levels of the crack growth simulatiand data collection, this thesis
develops systematic approaches to quantify andidecthese sources of uncertainty in

DT risk assessment and management.

Chapter 1l was focused on the modeling of diseedton errors. A non-
parameterized crack representation was employemddel the effects of spatial and
temporal discretization in 3-D finite element arsgdyof non-planar crack growth by
modeling both the block estimates of the correftadts and the kinetics of crack growth
in the low dimensional crack representation spaddie principles involved and the
solutions proposed are illustrated using data frEEA simulations of non-planar crack
growth under variable amplitude variable durationltiraxial loading. The surrogate
models were trained using FEA simulations at vayyevels of discretization. The work
presented in this chapter only considered one albnty spatial mesh control variable.
An expansion of this methodology should focus omtigp meshes with multiple
controlling parameters.

In Chapter 1V, a framework was provided to applyoktedge of uncertainty

sources present in fatigue crack growth experintiemtaoward the quantification of the

103



uncertainty in the parameters of a crack growth ehadned at predicting the outcome of
the experimentation. Since Paris law was impleggktiiroughout this thesis, the goal of
the work in this chapter was to calibrate distribng for the material parametersand
. The typical distributions for these parametessdiin most models include errors and

uncertainties that should be attributed to otheurses in the experimental process.
Chapter IV provided a methodology to properly catb these values by including all
known uncertainty sources in a Bayesian networkmé obvious future work on this
topic would be further investigation of the fatigexperimentation procedure to identify
and quantify more sources of error or uncertaintyhile the techniques presented here
addressed a visual imaging data acquisition systbm,methodology is generic and
applicable to other types of crack growth experitaen

The error sources identified in chapters Il andwgre used to correct the model
prediction in Chapter V. The equivalent planaickrgrowth model that was described in
Chapter 1l was used to predict the crack growthaimotorcraft mast under constant
amplitude loading. The model was adjusted to aatcdor both spatial and temporal
discretization error and the model parameter caiitan technique outlined in Chapter IV
was used to determine the appropriate values ferRéris Law coefficients. These
results were then compared against experimentaludabg a Bayesian hypothesis testing
validation metric.

Chapter VI of the thesis was concerned with risknaggement. A methodology
was presented in this chapter to determine maintanaspection interval and fidelity
level for a mechanical component in the aircraft.reliability based validation metric

was proposed as the method for determining thahiéty limit to be placed on the
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inspection interval length. A methodology was deped to use this reliability limit in
conjunction with the DT methodology to determine fesaand efficient
inspection/maintenance scheduling for the demamstracomponent. Two types of
inspection, LFI and HFI, were assumed availablé, the crack growth prediction model
was used to estimate the length of the next ingpechterval depending on which
inspection type was chosen. This information cdwgdused in two ways: 1) select the
inspection type with respect to the next individmaission duration, or 2) optimally
schedule multiple missions. An extension of thisrkv can consider additional
measurable quantities such as crack depth measotreatieer than only length, extent of

corrosion damage, etc.
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