A joint project of the Graduate School, Peabody College, and the Jean & Alexander Heard Library

Title page for ETD etd-04072013-211616

Type of Document Dissertation
Author Bai, Jia
Author's Email Address jia.bai@vanderbilt.edu
URN etd-04072013-211616
Title Optimization-based approach to cross-layer resource management in Wireless networked control systems
Degree PhD
Department Electrical Engineering
Advisory Committee
Advisor Name Title
Yuan Xue Committee Chair
Gabor Karsai Committee Member
Sherif Abdelwahed Committee Member
William H. Robinson Committee Member
Xenofon D. Koutsoukos Committee Member
  • cross-layer resource management
  • sampling rate adaptation
  • networked control system
  • network scheduling
  • fairness resource allocation
Date of Defense 2012-08-10
Availability unrestricted
Wireless Networked Control Systems (NCS) are increasingly deployed to monitor and control Cyber-Physical Systems (CPS), as wireless network provides great convenience in terms of fully mobile operation, rapid deployment and flexible installation. To support mission critical operations of CPS, NCS need to achieve and maintain a desirable level of performance. In the wireless network however, resources are constrained by limited bandwidth and power; dynamic user behaviors and resource interference also aggravate network uncertainties and introduce random packet loss and time-varying delay. These resource constraints and network dynamics pose significant challenges and require a fresh treatment to the design of wireless NCS.

In this dissertation, we investigate the problem of resource management in wireless networks to support NCS with stringent Quality of Service (QoS) requirements. The capability of adaptive resource management is crucial for NCS to fully exploit the available resource and achieve optimal performance. The interaction between networking systems and control systems is the key to adaptive resource management. It allows informed operation decisions within individual systems to collaboratively achieve a global management objective. In particular, we present a cross-layer approach to support interactions between wireless networks and networked control systems. The cross-layer design aligns with network layered architecture, thus is feasible for broader adoption in real-world deployment. We consider two information exchange directions in our design. When the control systems deliver their performance requirements to the wireless network, the network adjusts its operation parameters to facilitate the performance optimization of the control systems; When the wireless network passes congestion signals to the control systems, the control systems dynamically adapt their sampling rates to preserve optimal performance. We further explore the cross-layer interactions between the two systems and among layers within the networking protocol stack, which combine the design of control system sampling rate adaptation and the network scheduling. To arbitrate the resource sharing among multiple control systems, we present a new fairness model for wireless network based on the game theoretical framework, and evaluate the impact of resource sharing regions approximated by different neighborhood models.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  JiaBai_final.pdf 3.64 Mb 00:16:51 00:08:40 00:07:35 00:03:47 00:00:19

Browse All Available ETDs by ( Author | Department )

If you have more questions or technical problems, please Contact LITS.