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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1. Background to the Problem 

 

Anthropogenic alteration of the global environment is a principal interest confronting the world 

today, and this issue will maintain its significance in the future, as decisions made within this 

century will affect future generations to come. Human adaptation of natural resources to meet 

our needs impacts hydrology on both an atmospheric and terrestrial level. Humans have 

historically altered the global environment primarily through the conversion of native land to 

agricultural and urban land and through the atmospheric release of greenhouse gases from 

burning fossil fuels. Throughout the coming decades, agricultural expansion and intensification, 

urban growth, and natural resource extraction will likely accelerate in response to a growing and 

increasingly wealthy world population. There are multiple consequences for Earth systems, at all 

scales, from anthropogenic alteration of the Earthôs land surface and atmosphere [Kalnay and 

Cai, 2003; Pimm and Raven, 2000; Rose and Peters, 2001; Storck et al., 1998; Werth and 

Avissar, 2002]. Furthermore, scientific concern has been expressed regarding climate change 

impacts on future temperature and precipitation, with emphasis on drought frequency, duration, 

and severity over various regions of the globe [Intergovernmental Panel on Climate Change, 

2001]. Therefore, land use and climate changes are chief concerns facing the world this century, 

and the consequences of land use change may outweigh those from climate change [Sala et al., 

2000; Vörösmarty et al., 2000]. 
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Thus far, much of the research on land-use change consequences has focused on two issues: (1) 

the effects of land-use change on climate [Bonan, 1997; DeFries and Eshleman, 2004; 

Houghton, 1995], and (2) the effects of habitat loss on biodiversity [Sala et al., 2000]. Despite 

the many studies examining the relationships between vegetation, hydrological processes, and 

water quality, the effects of anthropogenic land-use change on hydrology have received little 

attention in land-use change research [Lambin et al., 1999]. Understanding the consequences of 

land-use change on hydrological processes represents an opportunity for academic inquiry 

[DeFries and Eshleman, 2004]. One such consequence is the changes in water supply from 

altered infiltration, runoff, and groundwater recharge. 

 

Identification and quantification of the hydrological consequences of land-use change are large 

undertakings and are complicated by: 1) the length and continuity of hydrological records; 2) the 

relatively high natural variability of most hydrological systems; 3) the inability to fully, 

ñexperimentally controlò land-use changes in catchments; 4) the relatively small number of 

controlled small-scale experimental studies that have been performed; and 5) the difficulties 

involved in extrapolating results from such controlled small-scale experimental studies to other 

larger, natural systems [DeFries and Eshleman, 2004]. The present understanding of land-use 

change on hydrology is predominately derived from controlled, experimental manipulations of 

the land surface, paired with pre- and post-manipulation observations of hydrological processes 

such as precipitation inputs and streamflow outputs [Bosch and Hewlett, 1982; Harr, 1981, 1986; 

Harr et al., 1975; Hornbeck et al., 1970; Likens et al., 1977; Swank and Crossley, 1988]. While 

an extensive literature on urbanization and agricultural management practices exists, most 

studies are based on analysis of observational data from comparative or case studies [Hollis, 
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1975; Potter, 1991; Rose and Peters, 2001]. The science of the hydrological impacts of land use 

change can benefit from more than this traditional macro-level discernment.  

 

In order to explore land use changes on hydrology, the effects of natural climate variability on 

hydrology must first be understood. Climate change has the potential to increase water scarcity 

in dry regions. This vulnerability to water scarcity has highlighted the need to better understand 

the causes of hydrological variability [Intergovernmental Panel on Climate Change, 2007]. 

Climate and hydrology create an intricately coupled system, as large-scale atmospheric and 

oceanic oscillations produce shifts in precipitation, air temperature, soil moisture, and runoff. 

Drastic and persistent changes in these variables may alter the likelihood of extreme events or 

cause changes in the form of seasonal precipitation. Understanding the natural climate drivers of 

variability in hydrology, particularly at decadal timescales, is of critical importance. At these 

time scales, inter-decadal to multi-decadal oceanic-atmospheric climate oscillations are 

important forcing mechanisms of hydroclimatic variability. The effects of anthropogenic climate 

change will be superimposed upon this natural variability. Detection of consistent phases of these 

natural oscillations and attribution of hydrologic anomalies to these phases are fundamental to 

understanding future climate change, both natural and anthropogenic, and managing water 

resources. 

 

The effects accompanying land use change and climate change, both natural and anthropogenic, 

span all scales. General understandings of some of these effects exist, but regional to local 

effects may vary. The effects on hydrology are not often visible, or they are difficult to 

distinguish. Through examination of drought indices, some of which are designed to capture the 
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hydrological effects of drought (e.g., groundwater recharge, reservoir levels, etc.), a description 

of the effects of natural climate change on groundwater and streamflow in regulated river basins 

may exist. Furthermore, understanding the effects of land use change on hydrology involves 

more than just precipitation inputs and streamflow outputs ï effects on groundwater-surface 

water (GW-SW) interactions are very important in such an endeavor as well. 

 

The White Bluffs along the Columbia River, near Locke Island, in south central Washington 

State provide a case study for exploring the effects of climate and land use change on local 

hydrology and, more specifically, GW-SW interactions. The prehistoric and modern landsliding 

activity along the bluffs and the relatively recent land use changes within the Columbia River 

Basin only serve to increase the relevance of this case study to such an area of research. In as 

much as the general subsurface conditions and the GW-SW interactions bear upon understanding 

the stability and mechanics of the landslide, land use changes and dam-induced river stage 

fluctuations directly impact these conditions and interactions. Natural climate change in turn 

influences GW-SW interaction and the broader, regional hydroclimatology. Therefore, in order 

to explore the timing, frequency, and proximal cause of landslide occurrence along the White 

Bluffs, first natural climate variability and then the impacts of land use change on GW-SW 

interaction must be understood.  

 

The research presented herein incorporates three objectives, narrowing from the broad, basin-

scale, temporal and spatial hydroclimatology to the regional landsliding activity and finally to the 

local GW-SW interaction between the bluffs and the river, in order to explore the effects of 

climate and land use change across the multiple scales of impact. Water and its effects are often 
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implicated as causes of slope failure; therefore, the overall research goal of this work is to 

develop a quantitative description of the hydrological conditions of the Locke Island landslide 

and the White Bluffs. Natural climate variability and land use change can increase recharge to 

the groundwater system, which, in turn, can increase storage within the system and discharge 

from the system. The two main research goals of this work are: (1) to understand the impacts of 

climate variability on the regional subsurface conditions, and (2) to understand the impacts of 

land use change on the regional and local subsurface conditions. The Palmer Drought Severity 

Index (PDSI) is used as a measure of subsurface moisture. Since this particular metric can be 

calculated at any spatial scale for which input data exists, two corollary research objectives of 

this work are: (1) to determine how representative regional PDSI values are of finer-scale PDSI 

values, and (2) to determine the conditions that control the differences in PDSI values between 

the two spatial scales. In assessing the impacts of climate variability on regional subsurface 

conditions, two seconday research objectives of this work are: (1) to determine the existence of 

low frequency periods of wetness and dryness over the Pacific Northwest of the United States, 

and (2) to assess solar insolation as a forcing mechanism for any low frequency periods of 

wetness and dryness. In examining the impacts of land use change on regional and local 

subsurface conditions, a secondary research objective of this work is to determine the 

groundwater flow response to changes in subsurface recharge from dam-induced river 

fluctuations, local irrigation wastewater ponds, and increased regional precipitation. 

 

There is evidence that landslides occurred along the White Bluffs in prehistoric times, within the 

last 11,000 years or so [Triangle Associates, Inc., 2003]. There is also evidence of younger 

landslides that were probably active in the last several hundred years [Triangle Associates, Inc., 
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2003]. Modern, active landslide activity along the Bluffs, however, began in the late 1960s, and 

toe erosion by the Columbia River was most likely the major cause of landsliding prior to 

irrigation on the land adjacent to the bluffs [Schuster et al., 1987]. Between 1953 and 1964, 

when irrigation water began to be supplied to the Pasco Basin, the Columbia River Project 

delivered the equivalent of an eight-fold annual increase in water to the area [Schuster et al., 

1987]. Irrigation water is provided to the area approximately six months of the year via an 

extensive network of canals and laterals that deliver water to fields for crop irrigation. 

Wasteways take water from the system and return it to the Columbia River; storage ponds are 

also a part of the irrigation wastewater system [Neff, 1989]. Because most of the canals, laterals, 

wasteways, and wasteway ponds behind the White Bluffs are unlined, seeps from these various 

channels percolate through the soil and recharge the groundwater [Neff, 1989]. Recharge from 

canal seepage and applied irrigation accounted for almost ninety percent of the increase in inflow 

to the groundwater system and the resulting rise in groundwater levels [Drost et al., 1993]. 

Between approximately 1946 and the mid-1980s, groundwater levels rose by an average of 60 m 

(200 ft); this resulted in a seven-fold increase in the annual flow through the groundwater system 

[Drost et al., 1993]. 

 

According to several reports within the last 25 years, modern landsliding of the White Bluffs at 

Locke Island began as a result of irrigation water delivered to unlined wastewater ponds and 

canals behind the bluffs [Bjornstad, 2006; Hays and Schuster, 1987; Nickens et al., 1998; 

Schuster et al., 1987; Triangle Associates, Inc., 2003]. Bjornstad [2006] maintains that the 

wastewater ponds were located over a glaciofluvial sediment-filled paleochannel eroded into the 

Ringold Formation and perpendicular to the bluff face opposite Locke Island. The percolating 
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irrigation water moves downward through the relatively permeable sands of the Hanford 

Formation until it reaches the fine-grained, fluvial-lacustrine Ringold Formation. Bjornstad 

[2006] and Bennett et al. [2002] suggest that the percolating water perches on top of the Ringold 

clays and silts and moves laterally along the old channel. Landslides occur where excess perched 

water seeps out from the paleochannel along the bluff face [Bjornstad, 2006].  

 

Slumping of the White Bluffs adjacent to Locke Island began in the late 1970s, with the majority 

of the landslide movement occurring between 1982 and 1996. Even though the ponds were 

completely drained in the mid-1990s in an attempt to stop the sliding, slumping of the Bluffs 

continued into the mid-2000s [Bjornstad, 2006]. Although the slide has moved up to 24 m (80 ft) 

between 1998 and 2002 [Bennett et al., 2002], the rate of movement at the toe of the landslide 

gradually slowed to the point where there was little movement in the years leading up to 2006 

[Bjornstad, 2006]. Bennett et al. [2002] suggest that the continued presence of the landslide 

debris in its present position is essential for maintaining the stability of the hillside, and the 

erosional loss of the debris to the Columbia River should be taken seriously. 

  

1.2. Structure of Dissertation 

 

The work presented in this dissertation represents a multi-level approach to investigate the 

regional and local hydrological responses to climate fluctuations and land use change in the 

Columbia River Basin, with specific attention given to the role of groundwater and surface water 

in the landslide activity along the White Bluffs adjacent to Locke Island in Washington State. So 
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that the relative importance of land use change on local hydrological responses can be 

understood, the hydrological response to climate fluctuations must first be identified.  

 

Drought indices provide information on the hydrological response to both precipitation and 

temperature on multiple timescales. There are several different drought indices that are routinely 

used in research, water resource management, and drought adaptation and mitigation, and the 

Palmer drought indices are used in this dissertation. Chapter 2 examines the effects of spatial 

resolution on the Palmer drought indices. This suite of drought indices can be calculated at any 

spatial resolution provided the climate and soil information data that serve as inputs to the model 

are available. Regional drought indices are typically used by researchers and policy makers, with 

the assumption that little information is lost in the aggregation. Chapter 2 examines the degree of 

variability between drought indices calculated at different spatial scales and explores the 

advantages gained in using fine-scale data for calculating the Palmer drought indices. This 

information provides insight into the appropriateness of the drought index data used to examine 

the effect of historical climate fluctuations on hydrology in the Columbia River Basin. 

 

Evidence of past landslide activity ï within both the last several hundred years and the last 

several thousand years ï indicates that climate may have a profound impact on the hydrology 

along the White Bluffs. Chapter 3 uses wavelet analysis to infer longer period climate cycles and 

changes in event periodicity from an existing 2000 year drought dataset. The drought metric 

within this dataset is the Palmer Drought Severity Index (PDSI), which has been reconstructed 

from annually dated tree-ring records. The climate cycles identified within the wavelet analysis 

are indicative of wet and dry periods within the Columbia River Basin; extensive wet and dry 
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periods can produce intense hydrological responses, especially with regard to soil moisture and 

recharge. Results from this regional analysis provide a background against which to assess the 

relationship between local groundwater fluxes and relatively recent landslide activity along the 

White Bluffs.  

 

Agriculture ï specifically irrigated agriculture ï has grown tremendously within the Columbia 

River Basin in the last half-century. Networks of canals and wasteways transport irrigation water 

behind the bluffs. Recent landslide activity at Locke Island has been attributed to the creation of 

ponds behind the bluff. Chapter 4 uses a two-dimensional finite element model to simulate the 

head changes and hence changes in groundwater fluxes at the toe of the landslide in response to 

stream stage variation, pond recharge, and increased precipitation recharge. Results from this 

chapter provide information on the relative importance of stream stage, irrigation wastewater 

ponds, and precipitation regimes in landslide activity. 

 

Finally, this dissertation concludes with a synthesis of the work. Chapter 5 draws inferences from 

the results contained in Chapters 2-4 and attempts to identify the roles of climate fluctuations and 

land use change in landslide activity. There is some speculation on how the whole system 

functions. 
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CHAPTER 2 

 

 

 

DROUGHT PLANNING AND MANAGEMENT: USING HIGH SPATIAL RESOLUTION AS 

PART OF THE SOLUTION1 

 

 

 

2.1. Introduction  

 

Water scarcity is a frequent problem in many parts of the world [Intergovernmental Panel on 

Climate Change, 2008]. As population grows, and agriculture, industry, and energy use expand, 

competition for water between demand-side sectors will continue to increase. Projected effects of 

climate change may combine with these stresses to reduce water availability in some parts of the 

world and simultaneously offset large increases in water demands in other parts of the world 

[Fung et al., 2011]. Moreover, given projected climate warming and precipitation changes for 

the twenty-first century, drought is likely to worsen in the future [Dai, 2011; Meehl et al., 2007; 

Sheffield and Wood, 2008]. Drought exacerbates water scarcity [Riebsame et al., 1991]. Drought 

affects virtually all climate zones, and drought is an aggravating phenomenon in that it impacts 

many sectors of society, often reaching beyond the area that is physically experiencing drought. 

It is therefore imperative that scientists and policy makers to quantify drought for analysis, 

monitoring, agricultural planning, and emergency planning and preparedness. 

 

Drought indices are routinely used to quantify drought. These indices assimilate large quantities 

of data on rainfall, snowpack, streamflow, and other water supply indicators into a 

                                                 
1 This chapter of the dissertation has been previously published as Duncan, L. L., D. Perrone, J. H. Jacobi, and G. M. 

Hornberger (2015). Drought planning and management: Using high spatial resolution as part of the solution. 

Environmental Science & Technology, 49(5), 2639-2647. 



32 

 

comprehensible big picture of moisture availability. The Palmer Index [Palmer, 1965] is a 

popular group of drought indices. The term ñPalmer Indexò collectively refers to three indices: Z 

Index, Palmer Drought Severity Index (PDSI), and Palmer Hydrological Drought Index (PHDI). 

The index numbers signify, in terms of moisture, the departure of the weather for a particular 

month and year from the average climate of that month. The Z Index reflects the monthly, short-

term soil moisture anomaly. The PDSI is a meteorological measure of drought, whereas the 

PHDI is a hydrological measure of drought. The primary distinction between the PDSI and PHDI 

is their beginning and ending times of a dry spell. With the PDSI, a spell is considered to have 

ended when the drought-inducing meteorological conditions end [Palmer, 1965]. With the PHDI, 

however, a spell does not end until the environment recovers from the drought [Palmer, 1965].  

 

Drought indices can be calculated and analyzed at a range of spatial scales. For example, 

regional values of the Palmer Index are one of the key parameters that make up the current US 

Drought Monitor scheme [Svoboda et al., 2002]. Studies have used regional values of the Palmer 

Index within probability models, such as Markov chain models [Lohani and Loganathan, 1997; 

Lohani et al., 1998; Steinemann, 2003] and dyadic wavelet transforms and neural networks [Kim 

and Valdés, 2002], to characterize and forecast drought. Regional drought values have also been 

used to examine drought frequency and duration [Kim et al., 2002; Soulé, 1992], probe the 

spatial and temporal characteristics of drought [Diaz, 1983; Eder et al., 1987; Jones et al, 1996; 

Karl and Koscielny, 1982; Klugman, 1978; Skaggs, 1975], and investigate teleconnection 

patterns to drought [Özger et al., 2009; Piechota and Dracup, 1996; Rajagopalan et al., 2000; 

Stahl and Demuth, 1999]. The PDSI has been used extensively to study dry and pluvial periods 

at multiple spatial scales and to place recent and historical events within the context of the 
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historical drought record [Briffa et al.., 1994; Dai, 2011; Dai et al., 1998; Dai et al., 2004; Heim, 

2002; Karl and Quayle, 1981; Palmer, 1965; van der Schrier et al., 2006a; van der Schrier et al., 

2006b; van der Schrier et al., 2007]. Studies have also calculated PDSI using global climate 

models to assess future drought scenarios [Burke et al., 2006; Dubrovsky et al., 2009; Kothavala, 

1999; Mavromatis, 2007]. 

 

Heterogeneity and variability in variables required for drought quantification manifest 

themselves at a range of scales. Precipitation is frequently intermittent and discontinuous, with 

rainfall events forming discrete zones of cumulation across often small areas. Likewise, soil 

types and properties exhibit a stunning degree of heterogeneity at the catchment and regional 

scales. Despite this variability and the fact that drought indices can be calculated at a range of 

spatial scales, regional index values are most commonly used for research and real-time drought 

assessments. Such aggregation leads to a loss of detail. Variation is subsumed in the aggregate, 

and the high-frequency characteristics of the fine-scale components are damped. The spatial 

resolution of national drought monitors and forecasts is a particular challenge for water resource 

managers. One respondent to a 2005 survey of water managers protested the use of general 

climate forecasts for regional areas specifically because of the lack of local information: ñéit 

can rain in one [watershed], but not in the nextéUnless I know whatôs going to happen in exact 

places I canôt use the forecastsò [Rayner et al., 2005]. The degree to which spatial variability 

matters in quantifying drought is not clear. Just how different are drought indices calculated at 

different spatial scales; and are they different enough that it matters to planners?  
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This paper serves two purposes: (1) to determine how representative regional drought indices are 

of finer-resolution drought indices, and (2) to determine the conditions that control the 

differences in spatial patterns between the two scales. To accomplish these objectives, drought is 

quantified at both regional and finer-resolutions. Spatial and temporal patterns of differences in 

drought between the two scales are then statistically examined, and the relationships that 

determine these differences are parsed. The Pacific Northwest US, including most of the 

Columbia River Basin, serves as the study area, due to the sharp contrast in climate across the 

region. This analysis is confined to the Palmer Index, as it is used by a diverse group of people, 

including scientists and policy makers, to monitor and assess wet and dry conditions in both the 

US and other parts of the world [Briffa et al., 1994; Burke et al., 2006; Dai, 2011; Dai et al., 

1998; Dubrovsky et al., 2009; Hu and Willson, 2000;  Jones et al., 1996; Kim and Valdés, 2003; 

Kim et al., 2002; Kogan, 1995; Kothavala, 1999; Mavromatis, 2007; Sakamoto, 1978; Szinell et 

al., 1998]. Finer-resolution drought is quantified with a high resolution grid. To measure regional 

drought, the climate division classification system is employed. Divisional boundaries cover the 

entire area of the state and they often, but not always, coincide with county boundaries. Although 

the climate division classification system is based only partially on climate considerations 

[Guttman and Quayle, 1996], numerous studies have employed the divisional spatial scale in 

using the Palmer drought indices to analyze drought [Davis and Rappaport, 1974; Karl, 1986a; 

Karl, 1986b; Karl and Heim, 1990; Karl et al., 1987; Karl et al., 2012; Keyantash and Dracup, 

2002; Klugman, 1978; Lohani and Loganathan, 1997; Özger et al., 2009; Skaggs, 1975; Soulé, 

1992; Whittemore et al., 1989]. While this particular regional classification system is unique to 

the US, regional classification systems in general are common throughout the world. 
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2.2. Data and Methods 

 

2.2.1. Overview of the Palmer Drought Model 

 

The Palmer drought model incorporates antecedent precipitation and moisture supply and 

demand into a hydrologic accounting system [Palmer, 1965]. The model requires only 

temperature, precipitation, and a soil water holding capacity (available water capacity, AWC, in 

the Palmer notation). Palmer's method begins with a water balance, which uses a two-layered 

model for soil moisture computations; the division of AWC between the two soil layers and the 

transfer of moisture between the layers are part of the model specifications [Alley, 1984]. Air 

temperature is used to calculate potential evapotranspiration (PET), generally using 

Thornthwaite's method [Thornthwaite, 1948; Willmott and Rowe, 1985; Wilm et al., 1944], 

which then becomes part of the water balance computations. Palmer used what he called a 

Climatologically Appropriate for Existing Conditions (CAFEC) precipitation quantity to 

calculate the ñnormalò moisture for a particular month. The moisture departure from ñnormalò 

for a particular month can subsequently be computed. A weighting factor is used to adjust these 

departures from normal precipitation with the intent that values would be comparable across 

space and time. The weighted departure is the Z Index. The calculation proceeds by computing 

three intermediate indices and a probability term. The intermediate indices quantify an incipient 

wet spell, an incipient dry spell, and the existing wet or dry spell, which is also called the PHDI; 

a probability term quantifies the beginning and ending of dry or wet periods. The drought 

severity for a particular month depends on the moisture anomaly (Z Index) for that month and on 

the drought severity for both preceding and succeeding months. Palmer used a backtracking 
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procedure, dependent upon the probability term, to assign one of the three intermediate indices as 

the PDSI. This procedure and the rules employed are not trivial [Alley, 1984]. When information 

on future drought severity is not available, an operational version of the PDSI, the Palmer 

Modified Drought Index (PMDI), is available for real-time drought monitoring [Heddinghaus 

and Sabol, 1991], and this variation is used in the US Drought Monitor scheme.  

 

2.2.2. Study Area 

 

Our study area includes all or part of five northwestern US states - Idaho, Montana, Oregon, 

Washington, and Wyoming (Figure 2.1). Since the US climate division classification system is 

used to quantify regional drought, climate divisions within these states that also contained a large 

proportion of the Columbia River basin were selected as the areal extent of this study. The area is 

bounded by the Rocky Mountains to the east, and the Cascade Mountains and low-lying valleys 

to the west. 

 

The region's mountains create sharp spatial contrasts in climate. The Cascade Mountains create a 

barrier between the maritime climate influences to the west and the continental climate 

influences to the east. Climate west of the Cascades is characterized by mild temperatures 

throughout the year, with abundant winter rains and dry summers. Sunshine and dry conditions 

become more common east of the Cascades, and annual and daily temperature ranges are 

considerably greater. While most of the entire region's precipitation occurs in just half of the year 

(October through March), a greater fraction of precipitation east of the Cascades falls in the 

warm half of the year, particularly in May and June [Mote et al., 2003]. Although precipitation 
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exhibits the greatest seasonality west of the Cascades, summer precipitation to the west is only 

slightly greater than that to the east [Mote et al., 2003]. 

 

 

Figure 2.1 | Study area map 

 

2.2.3. Data 

 

University of Delaware (UDEL) 1900-2010 gridded monthly air temperature [Matsuura and 

Willmott, 2012a] and precipitation [Matsuura and Willmott, 2012b] data were obtained from the 

Physical Sciences Division of the Earth Science Research Laboratory at the National Oceanic 
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and Atmospheric Administration (http://www.esrl.noaa.gov/psd/, accessed April 11, 2013). The 

gridded monthly air temperature data were created by interpolating monthly averages of station 

air temperature to a 0.5° by 0.5° latitude/longitude grid, where the grid nodes are centered on the 

0.25°. The gridded fields were estimated from monthly weather-station averages using a 

combination of spatial interpolation methods [Matsuura and Willmott, 2012a]. The gridded 

monthly precipitation data were created by interpolating station values of monthly total raingage-

measured precipitation to a 0.5° by 0.5° latitude/longitude grid, where the grid nodes are 

centered on the 0.25° [Matsuura and Willmott, 2012b]. Climatologically aided interpolation 

[Willmott and Robeson, 1995] was used to estimate the monthly total precipitation fields 

[Matsuura and Willmott, 2012b]. 

 

Although monthly temperature and precipitation data for climate divisions can be obtained from 

the National Climatic Data Center (NCDC), in order to be consistent, these divisional values 

were determined using the gridded, high resolution UDEL dataset.  Gridded temperature and 

precipitation data (1900-2010) were aggregated, using area-weighted averages, to the climate 

division scale. Latitudes at climate division centroids were obtained from the NCDC. 

 

AWC data from the National Resources Conservation Service (NRCS) state soil geographic 

(STATSGO) database were obtained from the Earth System Science Center at The Pennsylvania 

State University (http://www.soilinfo.psu.edu/, accessed August 23, 2013) [Miller and White, 

1998]. The AWC data were then aggregated, using area-weighted averages, to both the climate 

division scale and the 0.5° by 0.5° grid. 

 

http://www.esrl.noaa.gov/psd/
http://www.soilinfo.psu.edu/
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The monthly Z Index, PDSI, and PHDI for the 26 climate divisions and 344 grid boxes were 

calculated using a tool [Jacobi et al., 2013] that requires only average monthly temperature and 

precipitation, latitude, and AWC. The tool allows the user to choose between the Hamon 

[Hamon, 1963] and Thornthwaite [Thornthwaite, 1948; Willmott and Rowe, 1985; Wilm et al., 

1944] methods of calculating PET and the period used in calibrating certain variables derived 

from the water balance. For this analysis, the Thornthwaite method was used to calculate PET. 

This PET calculation method is not without caveats; for example, the Thornthwaite method has 

been shown to have a tendency to overestimate PET in the summer and at high latitudes [Amatya 

et al., 1995]. Sheffield and Wood [2012] argue that PDSI based on Thornthwaite PET is too 

temperature sensitive and a Penman-style PET model should be used instead. Still, the 

Thornthwaite method of calculating PET may be reasonably accurate for temperate climates 

[Rosenberry et al., 2004], and this method is used in practice throughout the United States and 

globally. The Thornthwaite method is also simple, requiring only measurements of air 

temperature, which is advantageous when long historical records of radiation data are not 

available. The entire period of record was chosen to calibrate water balance variables. 

 

2.2.4. Quantifying Differences 

 

The two sample Kolmogorov-Smirnov (K-S) test is used to determine how much the regional 

drought indices differ from the finer-resolution drought indices. This statistical test is 

advantageous, as it makes no assumption about the distribution of the data ï i.e., it is non-

parametric and distribution free. The K-S test compares the equality of the two empirical 

cumulative distribution functions (EDFs), and it is sensitive to differences in both location and 
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shape of the EDFs. Of interest is not only how much the regional and finer-resolution drought 

indices differ from each other but whether the two are different enough that it matters (e.g., to 

water managers and planners). Therefore, grid and climate division PDSI are mapped for a 

specific month and year, which helps to visualize the differences in spatial variability that can 

arise, specifically during a dry period. 

 

Cumulative distribution functions for grid and climate division Z Index, PDSI, and PHDI were 

developed from the historical data. The two-sample K-S test was applied to the two EDFs, which 

were estimated from the calculated climate division drought index series ὼ ȟὼ ȟỄȟὼ  and 

the calculated grid drought index series ὼ ȟὼ ȟỄȟὼ . The maximum difference, Ὀ , 

between the two EDFs is the K-S statistic, 

 

 Ὀ ÍÁØȿὊ ὼ Ὂ ὼ ȿȢ (2.1) 

 

                    

 

If the K-S statistic Ὀ  is larger than the critical value, 
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the null hypothesis is rejected at the ‌ ρππϷ significance level. For this analysis, ‌ was set to 

0.05. 

 

The K-S test, however, is predicated on the assumption of independent sampling. Plots of 

autocorrelation functions for the 78 climate division drought indices showed significant 
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autocorrelation. Ljung-Box Q-tests for autocorrelation at lags of one, five, and nine were 

conducted on residual time series calculated from the same data. Results from these tests suggest 

that there is significant autocorrelation at all lags in the residuals at the υϷ significance level. 

 

The assumption of independent sampling is important, since it is essential for determining the 

critical values at the ‌ ρππϷ significance level [Semenov and Welham, 2004]. Serial 

correlation in the data, such as that in the drought indices, causes the effective sample size or 

effective number of degrees of freedom to be smaller than the data sample size used in the test. 

When the data sample sizes ά and ὲ are used to determine the critical value for the test at a 

given significance level, the critical value is then smaller than the one anticipated under the 

independent sampling assumption. This causes the K-S test to reject the null hypothesis more 

often than expected at a given significance level. Therefore, instead of using the values of the K-

S statistic Ὀ  estimated from the assumed probability distributions, determining valid critical 

values of the K-S statistic with resampling tests or Monte Carlo tests [Wilks, 1995] may offer a 

potential solution [Qian et al., 2004]. 

 

The critical values of the K-S statistic Ὀ  were estimated through resampling tests for each of 

the 584 grid box-climate division pairs. Three resampling tests were performed for every grid 

box-climate division pair - one each for the Z Index, PDSI, and PHDI.  Following the 

methodology of Qian et al. [2004], the resampling procedure involved: (1) pooling the 111-year 

grid box observations for each drought index and the corresponding 111-year climate division 

observations for each drought index to form a 222-year data pool; (2) randomly selecting a year 

from the 222-year data pool without replacement 111 times to form a 111-year mixed sample; 
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(3) pooling the remaining 111-year data to form the second mixed sample; (4) computing the K-

S statistic Ὀ  from the EDFs estimated from the two 111-year mixed samples; (5) repeating 

steps two through four 1000 times to obtain 1000 values of Ὀ ; (6) taking the 95th percentile of 

the 1000 values of Ὀ   as the K-S statistic at the υϷ significance level. This significance level 

is the probability of a Type I error. The critical values of Ὀ  determined through resampling 

were used to either reject or fail to reject the null hypothesis of the K-S tests. 

 

2.2.5. Understanding Spatial Differences 

 

Multiple linear regression is used to examine the conditions that control the spatial patterns of 

differences between the grid and climate division drought. Average positive and negative 

differences between the grid and climate division drought indices serve as predictors, since 

differences between drought indices can be either positive or negative and the numbers of 

positive and negative differences are similar in magnitude. Histograms are used to determine the 

fraction of grid and climate division pairs that experience large positive and negative PDSI and 

PHDI differences with varying frequency. 

 

Three drought index time series are associated with each grid box and each climate division: Z 

Index, PDSI, and PHDI; and there are 584 different grid box-climate division pairs. Differences 

between the grid box Z Index time series and climate division Z Index time series were 

calculated for each pair, by subtracting the climate division value from the grid box value. These 

differences were either positive or negative. Positive differences in Z Index were averaged for 

each pair, and negative differences in Z Index were averaged for each pair. This process was 
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repeated for the PDSI and PHDI. This resulted in 584 average positive differences and 584 

average negative differences for each of the three drought indices. Average positive and negative 

precipitation and temperature differences for each grid box-climate division pair were calculated 

in the same way. AWC differences for each pair were calculated by subtracting the climate 

division value from the grid box value. Note that AWC differences are not averages, since there 

is only one AWC value for each grid box and only one AWC value for each climate division. 

 

Multiple linear regression was used to model the relationship between the average positive and 

negative drought index differences ώȟώȟỄȟώ  and temperature, precipitation, and AWC 

differences ὼȟὼȟỄȟὼ . Formally, the model given ὲ observations is 

 

 ώ ‍ ‍ὼ ‍ὼ Ễ ‍ὼ ‐ȟ (2.3) 

 

 

for Ὥ ρȟςȟỄȟὲ, where ‍ȟ ‍ȟ ‍ȟỄȟ ‍ are unknown coefficients to be estimated by 

ὦȟὦȟὦȟỄȟὦ and ‐ȟ‐ȟỄȟ‐ are independent random variables each with zero mean and 

unknown variance. Six response variables ά φ were used in this analysis: average positive Z 

Index, average negative Z Index, average positive PDSI, average negative PDSI, average 

positive PHDI, and average negative PHDI. Four predictors ὴ τ were used in this analysis: 

average temperature difference, average precipitation difference, AWC difference, and one 

constant. Response variables and predictors each contained 584 observations ὲ υψτ. 

 

The relationships between drought indices and temperature, precipitation, and AWC can be 

looked at in a slightly different way, in order to supplement the multiple linear regression. The 
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PDSI, temperature, and precipitation time series, as well as the difference in AWC, are analyzed 

for two grid box-climate division pairs: (1) one that experiences small average positive (and 

negative differences (i.e., between -1 and 1), and (2) one that experiences large average positive 

differences (i.e., Ó 2) and large average negative differences (i.e., Ò -2). 

 

The differences between the grid box drought time series and climate division drought time 

series were also used to create histograms. For each grid box-climate division pair, the number of 

differences in the grid box and climate division PDSI where the absolute value was greater than 

or equal to two was counted; the same was done for differences in the grid box and climate 

division PHDI. This resulted in 584 numbers, one for each grid box-climate division pair. These 

raw numbers were then converted to percentages of total historical time (111 years). The 

percentages of total time were binned to create two histograms ï one for differences in PDSI, 

and one for differences in PHDI. 

 

Average difference between grid and climate division PDSI values for historically dry, wet, and 

near normal periods were also calculated. These periods are defined by, first, calculating a 

weighted average PDSI value for the entire study area using climate division PDSI values and 

climate division areas as weights. Dry periods are classified as PDSI values less than or equal to 

-2; wet periods are classified as PDSI values greater than or equal to 2; and near normal periods 

are classified as PDSI values between -2 and 2. Differences are calculated by subtracting the 

climate division PDSI value from the grid box PDSI value and taking the absolute value. 
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2.3. Results 

 

The resampled K-S test rejects the null hypothesis that both the grid box and climate division Z 

Index data are generated from the same distribution for 81 of the 584 pairs at the 95% 

significance level (Table 2-1). Similarly, the test rejects the null hypothesis that the PDSI and 

PHDI values come from the same distribution for 412 and 416 pairs, respectively (Table 2-1). As 

expected, resampling decreases the number of times that the K-S test rejects the null hypothesis 

for all three indices; the reductions in number of rejections, while considerable at the 99% 

significance level, are small at the 95% significance level (Table A-1 in Appendix A). 

 

Table 2.1 | Resampled Two-Sample K-S Test Results 

Drought Index p-value Number (%) of Grid Box-Climate Division 

Pairs for which the Null Hypothesis is Rejected 

Z p<0.01 53 (9%) 

p<0.05 81 (14%) 

PDSI p<0.01 187 (32%) 

p<0.05 412 (71%) 

PHDI  p<0.01 180 (31%) 

p<0.05 416 (71%) 

Notes:  The K-S test returns a test decision for the null hypothesis that the two data samples are from the same 

continuous distribution; the test either rejects or fails to reject the null hypothesis. Numbers and percentages of grid 

box-climate division pairs where p<0.05 also include those where p<0.01. 

 

The resampled K-S tests yield three common groups of test decisions among the grid box-

climate division pairs. In one group, the test fails to reject the null hypothesis for all three 

drought indices. The medians of the pair distributions in this group are very close to the same, 
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and the tails of the distributions are similar in density (Figure 2.2a ï 2.2c). In another group, the 

test rejects the null hypothesis for the PDSI and PHDI only. Z Index distributions for pairs in this 

group are similar (Figure 2.2d), while PDSI and PHDI distributions may reflect shifts in the 

median (Figure 2.2e) or changes in densities near the tails (Figure 2.2e and 2.2f). In the last 

group, the test rejects the null hypothesis for all three drought indices. EDFs in this group may be 

remarkably different, showing large shifts in the medians (Figure 2.2g ï 2.2i). In addition to 

tangible differences in probability distributions, drought at the coarser, climate division scale and 

drought at the finer, grid box scale are spatially different (Figure 2.3a and 2.3b). 

 

 
Figure 2.2 | EDFs of historical monthly Z, PDSI, and PHDI for the grid box-climate division 

pairs highlighted in Figure 4. The K-S test rejects the null hypothesis for (e-i). 
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Figure 2.3 | Map of a) May 2001 PDSI calculated at the climate division spatial resolution and 

b) May 2001 PDSI calculated at the 0.5° by 0.5° latitude/longitude spatial resolution. 

 

There are no obvious spatial patterns in the resampled K-S test results for PDSI and PHDI 

(Figure 2.4a and 2.4b). A map of the resampled K-S test results for the Z Index is not shown due 

to the small number of grid box-climate division pairs where the null hypothesis is rejected 

(Table 2.1). The resampled K-S test results for PDSI and PHDI, however, are spatially congruent 

with average positive and negative differences in grid box and climate division PDSI and PHDI 

(Figure 2.5a ï 2.5d). The null hypothesis is rejected for much of the far eastern portion of the 

study area, particularly grid box-climate division pairs along the Rocky Mountains, and along the 
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southern periphery. Similarly, average positive and negative drought index differences tend to be 

larger in magnitude and can exceed ±2. The resampled K-S test fails to reject the null hypothesis 

for much of the interior of the study area, where average positive and negative index differences 

tend to be smaller in magnitude. 

 

For monthly PDSI and PHDI, the difference between the grid box value and the climate division 

value is greater than or equal to two between zero and sixty percent of the time. Forty-nine 

percent of grid box-climate division pairs experience PDSI differences greater than or equal to 

two at least thirty percent of the time (Figure 2.6a). Similarly, fifty-six percent of grid box-

climate division pairs experience PHDI differences greater than or equal to two at least thirty 

percent of the time (Figure 2.6b). 

 

There are no direct correlations between average drought index differences and average 

temperature and precipitation differences or AWC differences, as evidenced by low coefficient 

of determination values (Table A.1 in Appendix A). While these are not predictive relationships, 

some are significant. Average temperature and precipitation differences are significant (p<0.01) 

for both average positive and negative differences in all three drought indices. AWC is 

significant (p<0.05) for average negative PDSI and PHDI differences only. For one of the grid 

box-climate division pairs where average positive and negative differences are large, the 

difference in AWC is small, while both temperature and precipitation values vary ï at times 

drastically ï between the grid and climate division (Figure A.1 in Appendix A). For one of the 

grid box-climate division pairs where average positive and negative differences are small, the 

difference in AWC is quite large; and, while temperature and precipitation values vary between 
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the grid and climate division, precipitation values are much closer for this pair (Figure A.2 in 

Appendix A), where average positive and negative differences are small, than the previous pair 

(Figure A.1 in Appendix A), where average positive and negative differences are large. 

 

 
Figure 2.4 | Maps of resampled two-sample K-S test results for (a) PDSI and (b) PHDI. Grid 

boxes and climate division outlined in color correspond to those identified in Figure 2. 

 



50 

 

 
Figure 2.5 | Maps of (a) average positive PDSI difference, (b) average negative PDSI difference, 

(c) average positive PHDI difference, and (d) average negative PHDI difference. 

 

 












































































































































































































































































































































