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CHAPTER 1

INTRODUCTION

1.1.Background to the Problem

Anthropogenic alteration of the globativironment is a principal interest confronting the world
today, and this issue will maintain its significance in the fytasedecisions made within this

century will affect future generations to come. Hanaaaptation of natural resources to meet

our needs impacts hydrology on both an atmospheric and terrestriaHawgns have

historically altered the global environment primarily through the conversion of native land to
agricultural and urban larehd trough the atmospheric release of greenhouse gases from
burning fossil fuelsThroughout the coming decades, agricultural expansion and intensification,
urban growth, and natural resource extraction will likely accelerate in response to a growing and
increasingly wealthy world population. There anailtiple consequencédsr Earthsystems, at all
scales, from anthr opogeni candatmosphadalnaymandof t he
Cai, 2003 Pimm and Raver200Q Rose and Peter2001 Storck et al.1998;Werth and

Avissar 2003. Furthermore, scientific concern has been expressed regarding climate change
impacts on future temperature and precipitation, with emphasis on drought frequency, duration,
and severity over various regions of the gldinégfgovernmental Panel on Climate Change

2001]. Therefore,dnd useand climatechangs arechief concerafacingthe world this century,

and the consequences of land use changeontayeigh those from climate changgeda et al,

200Q Vorosmarty et al.2000].
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Thus far, much of the research on lars® change conseques has focused on two issu@s:
the effects of lad-use change on climatBdnan 1997;DeFries and Eshlemar2004

Houghton 1999, and (2) the effects of habitat loss on biodiverg8glaet al, 2000] Despite
themanystudesexamining the relationships between vegetation, hydrabgrocesses, and
water quality, the effects of anthropogenic lars® changen hydrology have received little
attenton in landuse change researdtgjmbinet al, 1999. Understanding the consequences of
land-use change on hydrolmgl processerepresents aapportuniy for academic inquiry
[DeFries and Eshlemar2004. One such consequencehs changes in water supply from

altered infiltration, runoffand groundwater recharge.

Identification and quantification of the hydrological consequences ofuaaathange are large
undertakings and are complicated by: 1)lémgth and continuity dfiydrological records; 2) the
relatively high natural variabilitgf most hydrological systems; 3) the inability to fully,

Aex per i ment ailuseghamgeshntcatohrheats; #) gha relatively small number of
controlled smalscale experimental studies that have been performed; and 5) the difficulties
involved in trapolating results from such controlled srsdble experimental studies to other
larger, natural systeni®eFries and Eshlemar2004] The present understanding of laumsk
change on hydrology is predominately derived from controlled, experimental utedigps of

the land surface, paired with pand postmanipulation observations of hydrological processes
such as precipitatiomputs and streamflow outputB¢sch and Hewlettl982;Harr, 1981, 1986;
Harr et al, 1975;Hornbeck et a].1970;Likens etal., 1977;Swank and Crosslef988] While

an «tensive literature onrbanization and agricultural management pracécests most

studies are based analysis of observational data from comparative or case stiithés|
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1975;Potter, 1991;Rose ad Peters 2001].The science of the hydrological impacts of land use

change can benefit fromore than this traditional mactevel discernment.

In order to explore land use changes on hydrology, the effects of natural climate variability on
hydrology must first be understoodlimate change has the potential to increase water scarcity
in dry regions. This winerability to water scarcity hdmsghlighted theneed to better understand
the causes ohydrological variabilityf Intergovernmental Panel on ClinreaChange2007].

Climate and hydrology create an intricately coupled system, asdaadgeatmospheriand

oceanic oscillations produce shifts in precipitation, air temperature, soil moisture, and runoff.
Drastic and persistent changes in these variab#gsalter the likelihood of extreme events or
cause changes in the form of seasonal precipitdtioderstanding the natural climate drivers of
variability in hydrology, particularly at decadal timescales, is of critical importance. At these
time scales nterdecadal to multdecadal oceaniatmospheric climate oscillations are
importantforcing mechanismef hydroclimatic variability The effects of anthropogenic climate
change will be superimposedargthis natural variabilityDetection of consistent plses of these
natural oscillations and attribution of hydrologic anomalies to these phases are fundamental to
understanding future climate change, both natural and anthropogenic, and managing water

resources.

The effects accompanying land use change Améie change, both natural and anthropogenic,
span all scales. General understandings of some of these effects exist, but regional to local
effects may vary. The effects on hydrology are not often visibliney aredifficult to

distinguish. Through exaination of drought indices, some of which are designed to capture the
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hydrological effects of drought (e.g., groundwater recharge, reservoir levels, etc.), a description
of the effects of natural climate change on groundwater and streamflow in regiietdzasins

may exist. Furthermore, understanding the effects of land use change on hydrology involves
more than just precipitation inputs and streamflow outpetf$ects on groundwatesurface

water (GWSW) interactions are very important in such an emdeas well.

The White Bluffs along the Columbia River, near Locke Island, in south central Washington
State provide a case study for exploring the effects of climate and land use change on local
hydrology and, more specifically, G\BW interactions. Thprehistoric and modern landsliding
activity along the bluffs and the relatively recent land use changes within the Columbia River
Basin only serve to increase the relevance of this case study to such an area of research. In as
much as the general subsudamnditions and the G\SW interactions bear upon understanding
the stability and mechanics of the landslide, land use changes ariddiared river stage
fluctuations directly impact these conditions and interactions. Natural climate change in turn
influences GWSW interaction and the broader, regional hydroclimatology. Therefore, in order
to explore the timing, frequency, and proximal cause of landslide occurrence along the White
Bluffs, first natural climate variability and then the impacts of land hsege on GWSW

interaction must banderstood.

The research presedtlerein incorporates three objectives, narrowing from the broad; basin
scale, temporal and spatial hydroclimatology to the regional landsliding activity and finally to the
local GW-SW interaction between the bluffs and the river, in order to explore the effects of

climate and land use change across the multiple scales of iMfetet. and its effects are often
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implicated as causes of slope failure; therefore, the overall research goalvebrk is to

develop a quantitative description of the hydrological conditions of the Locke Island landslide
and the White BluffsNatural climate variability and land use change can increase recharge to
the groundwater system, which, in turn, canéase storage within the system and discharge

from the system. The two main research goals of this work are: (1) to understand the impacts of
climate variability on the regional subsurface conditions, and (2) to understand the impacts of
land use change dhe regional and local subsurface conditions. The Palmer Drought Severity
Index (PDSI) is used as a measure of subsurface moisture. Since this particular metric can be
calculated at any spatial sedbr which input data exists, tvaorollary research obgtives of

this work are: (1jo determinéhow representativeegionalPDSI values are diner-scale PDSI

values and (2) to determine the conditions that control the differences in PDSI values between
the two spatial scaleb assessing the impacts oinchte variability on regional subsurface
conditions, two seconday research objectives of this work are: (1) to determine the existence of
low frequency periods of wetness and dryness over the Pacific Northwest of the United States,
and (2) to assess solasolation as a forcing mechanism for any low frequency periods of
wetness and dryness. In examining the impacts of land use change on regional and local
subsurface conditions, a secondary research objective of this work is to determine the
groundwater flav response to changes in subsurface reclfewgedaminduced river

fluctuations, local irrigation wastewater ponds, arateased regional precipitation.

There is evidence that landslides occurred along the White Bluffs in prehistoric times théthin
last 11,000 years or $driangle Associates, Inc2003] There is also evidence of younger

landslides that were probably active in the last several hundred[yeiargyle Associates, Inc.
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2003] Modern, active landslide activigtong theBluffs, howeve, began in the late 1960s, and
toe erosion by the Columbia River was most likely the major cause of landgithingo
irrigationon the land adjacent to the bluffS8dhuster et al.1987. Between 1953 and 1964,

when irrigation water began to be supglito the Pasco Basin, the Columbia River Project
delivered the equivalent of an eig¢iotd annualincrease in water to the areachuster et al.

1987] Irrigation water is provided to the area approximately six months of the year via an
extensive networkf canals and laterals that deliver water to fields for crop irrigation.
Wastewaydake water from the system and return it to the Columbia River; storage ponds are
also apart of therrigation wastewater systenNgff 1989. Because most of the candégerals,
wasteways, and wasteway ponds behind the White Bluffs are unlined, seeps from these various
channels percolate through thel smd recharge the groundwatdlefff 1989. Recharge from

canal seepage and applied irrigation accounted for almaatyrpercent of the increase in inflow
to the groundwater system and the rasgltise in groundwater level®fostet al, 1993.
Betweenapproximately 194@nd the miel980s, groundwater levels mby an average of 60 m
(200 t); this resulted in a semdold increase in the annual flow through the groundwater system

[Drost et al, 1993]

According to several reports within the last 25 yeaxsdenn landslidingf theWhite Bluffs at
Locke Islandbegan as a result of irrigation water delivered to udliwastewater ponds and
canals behind the blufi8jornstad 2006 Hays and Schustet987;Nickens et a).1998;
Schuster et a1.1987;Triangle Associates, Inc2003] Bjornstad[2006] maintains thatie
wastewater ponds were located over a glacioflisedimentfilled paleochannel eroded into the

Ringold Formation and perpendicular to the bluff face opposite Locke Island. The percolating
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irrigation water moves downward through the relatively permeable sands of the Hanford
Formation until it reaches thHme-grained, fluviallacustrine Ringold Formatio®jornstad

[2006] andBennett et al[2002] suggest thahe percolating water perebon top of the Ringold
clays and silts and moséaterally along the old channélandslides occur where excess perched

water seeps out from the pathannel along the bluff facBjprnstad 2009.

Slumpingof the White Bluffs adjacent to Locke Islahdgan in the late 1970&ith the majority
of the landslide movement occurring between 1982 and 19@6. though the pals were
completely drained in the miti990s in an attempt to stop the slidisumping of the Bluf
continued into the mi@000s[Bjornstad 2006] Although the slide has moved up2é m (80 ft)
between 1998 and 200B¢nnett et a).2003, the rate ofovement at the toe of the landslide
gradually slowed to the point where theraslittle movementm the years leading up to 2006
[Bjornstad 2004. Bennett et al[2009 suggest that the continued presence of the landslide
debris in its present positios essential for maintaining the stability of the hillside, and the

erosional loss of the debris to the Columbia River should be taken seriously.

1.2. Structure of Dissertation

The work presented in this dissertatiepresents a multevel approach to inwtigate the

regional and locahydrologicalresponses to climate fluctuations and land use change in the

Columbia River Basin, with specific attention given to the role of groundwater and sugtare w

in the landslide activitglong the White Bluffs adj&nt to Locke Island in Washingt®&ate.So
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that the relative importance of land use change on local hydrological responses can be

understood, the hydrological response to climate fluctuations must first be identified

Drought indices provide informaticon the hydrological response to both precipitation and
temperature on multiple timescales. There are several different drought indices that are routinely
used in research, water resource management, and drought adaptation and mitigation, and the
Palmer dought indices are used in this dissertation. Chapter 2 examines the effects of spatial
resolution on the Palmer drought indic€kis suite of drought indices can be calculated at any
spatial resolution provided the climate and soil information data ¢na¢ s1s inputs to the model

are available. Regional drought indices are typically used by researchers and policy makers, with
the assumption that little information is lastthe aggregatiarChapter 2 examines the degree of
variability between drought dices calculated at different spatial scales and explores the
advantages gained in using fiseale data for calculating the Palmer drought indices. This
information provides insight into the appropriateneshefdrought index data used to examine

the efect of historical climate fluctuations on hydrology in the Columbia River Basin.

Evidence of past landslide activitywithin both the last several hundred years and the last
several thousand yedrsndicates that climate may have a profound impactherhidrology

along the White Bluffs. Chapter 3 uses wavelet analysigéo longer period climate cycles and
changes in event periodicity from aristing2000 year drought dataset. The drought metric
within this dataset is the Palmer Drought Severitieln(PDSI), which has been reconstructed
from annually dated treeng records. The climate cycles identified within the wavelet analysis

are indicative of wet and dry periods within the Columbia River Basin; extensivaend dry
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periods can produce inte@ hydrological responses, especially with regard to soil moisture and
recharge. Results from this regional analysis provide a background against which to assess the
relationship between local groundwater fluxes and relatively recent landslide activigytiaéo

White Bluffs.

Agriculturei specifically irrigated agriculturé has grown tremendously within the Columbia
River Basin in the last hatfentury. Networks of canals and wasteways transport irrigation water
behind the bluffs. Recent landslide aityinat Locke Island has been attributed to the creation of
ponds behind the bluff. Chapter 4 usds/a-dimensionafinite element model teimulate the

head changes and hence changggsaonndwatefluxes at the toe of the landslideresponse to
streamstage variation, pond recharge, and increased precipitation redRasggts from this
chapter provide information on the relative importance of stream stage, irrigation wastewater

ponds, and precipitation regimes in landslide activity.

Finally, this disertationconcludeswith a synthesisf the work. Chapter Braws inferences from
the lesults contained in Chaptergland attemptsotidentify the roles of climate fluctuations and
land use change in landslide activity. There is some speculation ofméaevinble system

functions.
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CHAPTER 2

DROUGHT PLANNING ANDMANAGEMENT: USING HIGH SPATIAL RESOLUTON AS
PART OF THE SOLUTION

2.1. Introduction

Water scarcity is a frequent problem in many parts of the jortdrgovernmentaPanel on

Climate Change 2008] As population grows, and agriculture, industry, and energy use expand,
competition for water between demaside sectors will continue to increase. Projected effects of
climate change may combine with these stresses to reduce water availability in ssroéthar
world and simultaneously offset large increases in water demands in other parts of the world
[Fung et al, 2011] Moreover, given projected climate warming and precipitation changes for
the twentyfirst century, drought is likely to worsen in theaure[Dai, 2011; Meehl et al. 2007,
Sheffield and Woq@008] Drought exacerbates water scar§Ryebsame et gl1991] Drought
affects virtually all climate zones, and drought is an aggravating phenomenon in that it impacts
many sectors of societgften reaching beyond the area that is physically experiencing drought.
It is therefore imperative that scientists and policy makers to quantify drought for analysis,

monitoring, agricultural planning, and emergency planning and preparedness.

Drought indces are routinely used to quantify drought. These indices assimilate large quantities

of data on rainfall, snowpack, streamflow, and other water supply indicators into a

1 This chapter of the dissertation has been previously published as Duncan, L. L., D. Perrone, J. HndagoM, a
Hornberger (2015). Drought planning and management: Using high spatial resolution as part of the solution.
Environmental Science & Technolo@(5), 26392647.
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comprehensible big picture of moisture availability. The Palmer Ifidakner, 1965]is a

popul ar group of drought indices. The term
Index, Palmer Drought Severity Index (PDSI), and Palmer Hydrological Drought Index (PHDI).
The index numbers signify, in terms of moisture, the depaofutee weather for a particular

month and year from the average climate of that month. The Z Index reflects the monthly, short
term soil moisture anomaly. The PDSI is a meteorological measure of drought, whereas the
PHDI is a hydrological measure of draugThe primary distinction between the PDSI and PHDI

is their beginning and ending times of a dry spell. With the PDSI, a spell is considered to have
ended when the droughtducing meteorological conditions effalmer, 1965] With the PHDI,

however, agell does not end until the environment recovers from the dr¢eghnher, 1965]

Drought indices can be calculated and analyzed at a range of spatial scales. For example,
regional values of the Palmer Index are one of the key parameters that makeurpetiteUS
Drought Monitor schemgSvoboda et al2002] Studies have used regional values of the Palmer
Index within probability models, such as Markov chain moflathani and Loganathgri997;
Lohani et al, 1998;Steinemann2003]and dyadic waveldtansforms and neural networkéim

and Valdes, 2002] to characterize and forecast drought. Regional drought values have also been
used to examine drought frequency and durdtiom et al, 2002;Souk, 1992] probe the

spatial and temporal charactestiof droughfDiaz, 1983;Eder et al, 1987;Jones et gl1996;

Karl and Koscielny1982;Klugman 1978;Skaggs1975] and investigate teleconnection

patterns to droughiOzger et al, 2009;Piechota and Dracupl 996;Rajagopalan et a).2000;

Stahl andDemuth 1999] The PDSI has been used extensively to study dry and pluvial periods

at multiple spatial scales and to place recent and historical events within the context of the
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historical drought recorfBriffa et al., 1994;Dai, 2011;Dai et al, 1998;Dai et al, 2004;Heim,
2002;Karl and Quayle 1981;Palmer, 1965;van der Schrier et gl2006ayvan der Schrier et al.
2006b;van der Schrier et 312007] Studies have also calculated PDSI using global climate
models taassess future drought scenafiBsrke et al. 2006;Dubrovsky et a).2009;Kothavalg

1999;Mavromatis 2007]

Heterogeneity and variability in variables required for drought quantification manifest

themselves at a range of scales. Precipitation is frequently intermittent andidismasitwith

rainfall events forming discrete zones of cumulation across often small areas. Likewise, soil
types and properties exhibit a stunning degree of heterogeneity at the catchment and regional
scales. Despite this variability and the fact that ghtindices can be calculated at a range of

spatial scales, regional index values are most commonly used for research-éinterdedught
assessments. Such aggregation leads to a loss of detail. Variation is subsumed in the aggregate,
and the higHrequency characteristics of the firscale components are damped. The spatial
resolution of national drought monitors and forecasts is a particular challenge for water resource

managers. One respondent to a 2005 survey of water managers protested the esal of gen

climate forecasts for regional areas specific
can rain in one [watershed], but not in the n
pl aces | ¢ an 0 fRayoes et al.2005.Thé degree to avisich spatial variability

matters in quantifying drought is not clear. Just how different are drought indices calculated at

different spatial scales; and are they different enough that it matters to planners?
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This paper serves two purposel). o determine how representative regional drought indices are
of finer-resolution drought indices, and (2) to determine the conditions that control the
differences in spatial patterns between the two scateaccomplish these objectivespughtis
guantified at both regional and fingesolutions Spatialand temporapatterns of differences in
drought between the two scake®thenstatisticallyexaminedandthe relationships that

determine these differencase parsed. fle Pacific Northwest US, ihading most of the

Columbia River Basinserves as thstudy area, due to the sharp contrastlimate across the
region. Thisanalysis is confined to the Palmer Index, as it is used by a diverse group of people,
including scientists and policy makersnonitor and assess wet and dry conditions in both the
US and other parts of the wollBriffa et al, 1994;Burke et al. 2006;Dai, 2011;Dai et al,
1998;Dubrovsky et a).2009;Hu and Willson2000; Jones et a.1996;Kim and Valds, 2003;

Kim et al, 2002;Kogan 1995;Kothavalg 1999;Mavromatis 2007;Sakamotp1978;Szinell et

al., 1998] Finerresolution droughis quantifiedwith a high resolution grid. To measure regional
drought,the climate division classification systesnemployed Divisional boundaries cover the
entire area of the state and they often, but not always, coincide with county boundaries. Although
the climate division classification system is based only partially on climate considerations
[Guttman and Quay)el996] numerous sidies have employed the divisional spatial scale in
using the Palmer drought indices to analyze dro[igavis and Rappaporii974;Karl, 1986a;

Karl, 1986b;Karl and Heim 1990;Karl et al., 1987;Karl et al., 2012;Keyantash and Dracyp
2002;Klugman 1978; Lohani and Loganatharl997;0zger et al, 2009;Skaggs1975;Souk,
1992;Whittemore et al.1989] While this particular regional classification system is unique to

the US, regional classification systems in general are common throughout the world.
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2.2.Data and Methods

2.2.1.0Overview of the Palmer Drought Model

The Palmer drought model incorporates antecedent precipitation and moisture supply and
demand into a hydrologic accounting sysf{éralmer, 1965] The model requires only

temperature, precipitationnd a soil water holding capacity (available water capacity, AWC, in

the Palmer notation). Palmer's method begins with a water balance, which usdayeted

model for soil moisture computations; the division of AWC between the two soil layers and the
transfer of moisture between the layers are part of the model specifid#tileys1984] Air
temperature is used to calculate potential evapotranspiration (PET), generally using
Thornthwaite's methofl hornthwaite 1948;Willmottand Rowe1985;Wilm et d., 1944]

which then becomes part of the water balance computations. Palmer used what he called a
Climatologically Appropriate for Existing Conditions (CAFEC) precipitation quantity to
calcul ate the fAnormal 0 moi st wermparftaumr ea fpam ificw
for a particular month can subsequently be computed. A weighting factor is used to adjust these
departures from normal precipitation with the intent that values would be comparable across
space and time. The weighted departure iZthedex. The calculation proceeds by computing

three intermediate indices and a probability term. The intermediate indices quantify an incipient
wet spell, an incipient dry spell, and the existing wet or dry spell, which is also called the PHDI,
a probality term quantifies the beginning and ending of dry or wet periods. The drought

severity for a particular month depends on the moisture anomaly (Z Index) for that month and on

the drought severity for both preceding and succeeding months. Palmer uskttackiag
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procedure, dependent upon the probability term, to assign one of the three intermediate indices as
the PDSI. This procedure and the rules employed are not {élay, 1984] When information

on future drought severity is not available, aeragtional version of the PDSI, the Palmer

Modified Drought Index (PMDI), is available for re@ine drought monitorinfHeddinghaus

and Sabql1991] and this variation is used in the US Drought Monitor scheme.

2.2.2.Study Area

Our study area includes all part of five northwestern US statellaho, Montana, Oregon,
Washington, and Wyoming (Figu#l). Since the US climate division classification system

usedto quantify regional drought, climate divisions within these states that also contained a large
proportion of the Columbia River basin were selected as the areal extent of this study. The area is
bounded by the Rocky Mountains to the east, and the Cascade Mountains-yiddmalleys

to the west.

The region’'s mountains create sharp spatial cetstra climate. The Cascade Mountains create a
barrier between the maritime climate influences to the west and the continental climate
influences to the east. Climate west of the Cascades is characterized by mild temperatures
throughout the year, with abdant winter rains and dry summers. Sunshine and dry conditions
become more common east of the Cascades, and annual and daily temperature ranges are
considerably greater. While most of the entire region's precipitation occurs in just half of the year
(Octoler through March), a greater fraction of precipitation east of the Cascades falls in the

warm half of the year, particularly in May and JyiMote et al, 2003] Although precipitation
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exhibits the greatest seasonality west of the Cascades, summer gtienipat the west is only

slightly greater than that to the efligiote et al, 2003]

NEVADA

|:| Study Area Boundary  Elevation

[] state Boundary [ High
River Low

220
[ IKilometers

Figure 2.1 | Study area map

2.2.3.Data

University of Delaware (UDEL) 1902010 gridded monthly air temperatyiMatsuura aml
Willmott, 2012ajand precipitatioiMatsuura and Willmoft2012b]data were obtained from the

Physical Sciences Division of the Earth Science Research Laboratory at the National Oceanic
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and Atmospheric Administratiomitp://www.esrl.noaa.gov/psdiccessedpril 11, 2013. The

gridded monthly air temperature data were created by interpolating monthly averages of station
air temperature to a 0.by 0.5 latitude/longitude grid, where the grid nodes are cedten the

0.25. The gridded fields were estimated from monthly weast@ion averages using a
combination of spatial interpolation methdi#4atsuura and Willmoft2012a] The gridded

monthly precipitation data were created by interpolating station valueonthly total raingage
measured precipitation to a Oy 0.5 latitude/longitude grid, where the grid nodes are

centered on the 0.2%Matsuura and Willmott2012b] Climatologically aided interpolation

[Willmott and Robesqri995]was used to estiate the monthly total precipitation fields

[Matsuura and Willmoft2012b]

Although monthly temperature and precipitation data for climate divisions can be obtained from
the National Climatic Data Center (NCDC), in ortlebe consistent, these divisionalues

were determinedsing the gridded, high resolution UDEL dataset. Gridded temperature and
precipitation data (1962010) were aggregated, using avegighted averages, to the climate

division scale. Latitudes at climate division centroids wereioddafrom the NCDC.

AWC data from the National Resources Conservation Service (NRCS) state soil geographic
(STATSGO) database were obtained from the Earth System Science Center at The Pennsylvania

State Universitylfttp://www.soilinfo.psu.edy/accessed August 23, 20I®iller and White

1998] The AWC data were then aggregated, using-asghted averages, to both the climate

division scale and the (. by 0.5 grid.
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The monthly Z Index, PDSI, and PHDI fdret 26 climate divisions and 344 grid boxes were
calculated using a topJacobi et al. 2013]that requires only average monthly temperature and
precipitation, latitude, and AWC. The tool allows the user to choose between the Hamon
[Hamon 1963]and Thornhwaite[ Thornthwaite 1948;Willmott and Rowgel985;Wilm et al,
1944]methods of calculating PET and the period used in calibrating certain variables derived
from the water balance. For this analysis, the Thornthwaite method was used to calculate PET.
This PET calculation method is not without caveats; for example, the Thornthwaite method has
been shown to have a tendency to overestimate PET in the summer and at high |Aimadiyes

et al, 1995] Sheffield and Woo®2012 argue that PDSI based on Thitnwaite PET is too
temperature sensitive and a Penraggle PET model should be used instead. Still, the
Thornthwaite method of calculating PET may be reasonably accurate for temperate climates
[Rosenberry et §12004] and this method is used in practibeoughout the United States and
globally. The Thornthwaite method is also simple, requiring only measurements of air
temperature, which is advantageous when long historical records of radiation data are not

available. The entire period of record was @mow calibrate water balance variables.

2.2.4.Quantifying Differences

The two sample Kolmogore8mirnov (K-S) testis usedo determine how much the regional
drought indices differ from the fineesolution drought indices. This statistical test
advantagegs, as it makes no assumption about the distribution of thé datait is non
parametric and distribution free. TheSKtestcompares the equality of the two empirical

cumulative distribution functions (EDFs), and it is sensitive to differences lmldcdtion and
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shape of the EDFOT interest is not onljiow much the regional and firegsolution drought
indices differ from each other bwhether the two are different enough that it matters (e.g., to
water managers and planners). Therefore, andclimate division PDSare mappedbr a
specific month and year, which helps to visualize the differences in spatial variddaitigan

arise, specifically during a dry period

Cumulative distribution functions for grid and climate division Z Index, PB& PHDI were
developed from the historical data. The tsample KS test was applied to the two EDFs, which
were estimated from the calculated climate division drought index seridso FE hio  and

the calculated grid drought indexrigs & ho FE hy . The maximum differenc&®

between the two EDFs is theX statistic,

0 lASD ® Own 8 (2.1)

If the K-S statisticO is larger than the crdal value,

(2.2)
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the null hypothesis is rejected at the p 1t tdignificance level. For this analysiswas set to

0.05.

The K-S test, however, is predicated on the assumption of indeperaeplirsy. Plots of

autocorrelation functions for the 78 climate division drought indices showed significant
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autocorrelation. LjungBox Q-tests for autocorrelation at lags of one, five, and nine were
conducted on residual time series calculated from the dataeResults from these tests suggest

that there is significant autocorrelation at all lags in the residuals atitsggnificance level.

The assumption of independent sampling is important, since it is essential for determining the
critical values athe|  p 1 Tt $gnificance leve]Semenov and Welha@004] Serial

correlation in the data, such as that in the drought indices, causes the effective sample size or
effective number of degrees of freedom to be smaller than the data sample size usedtn the t
When the data sample siaesand¢ are used to determine the critical value for the test at a

given significance level, the critical value is then smaller than the one anticipated under the
independent sampling assumption. This causes 18dd&t 0 reject the null hypothesis more

often than expected at a given significance level. Therefore, instead of using the values of the K
S statisticO  estimated from the assumed probability distributions, determining valid critical
values of the KS shtistic with resampling tests or Monte Carlo t¢8¥lks 1995]may offer a

potential solutiorfQian et al, 2004]

The critical values of the 48 statisticO  were estimated through resampling tests for each of
the 584 grid boxclimate division pirs. Three resampling tests were performed for every grid
box-climate division pair one each for the Z Index, PDSI, and PHDI. Following the
methodology oRian et al.[2004], the resampling procedure involved: (1) pooling the-yiddr
grid box observadns for each drought index and the correspondingy®eht climate division
observations for each drought index to form a-g@ar data pool; (2) randomly selecting a year

from the 222year data pool without replacement 111 times to form aygat mixed ample;
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(3) pooling the remaining 1iyear data to form the second mixed sample; (4) computing-the K
S statisticO  from the EDFs estimated from the two 3yildar mixed samples; (5) repeating
steps two through four 1000 times to obtain 1000 valu& of (6) taking the 9% percentile of
the 1000 values d  as the KS statistic at the Psignificance level. This significance level

is the probability of a Type | error. The critical value€of determined through resampling

wereused to either reject or fail to reject the null hypothesis of Het&sts.

2.2.5.Understanding Spatial Differences

Multiple linear regressiors usedo examine the conditions that control the spatial patterns of
differences between the grid and climatesion drought. Average positive and negative
differences between the grid and climate division drought indices serve as predictors, since
differences between drought indices can be either positive or negative and the numbers of
positive and negative diffences are siilar in magnitude. itogramsare usedo determine the
fraction of grid and climate division pairs that experience large positive and negative PDSI and

PHDI differences with varying frequency.

Three drought index time series are associatdderch grid box and each climate division: Z
Index, PDSI, and PHDI; and there are 584 different gridddiomate division pairs. Differences
between the grid box Z Index time series and climate division Z Index time series were
calculated for each paiby subtracting the climate division value from the grid box value. These
differences were either positive or negative. Positive differences in Z Index were averaged for

each pair, and negative differences in Z Index were averaged for each pair. This ywaxces
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repeated for the PDSI and PHDI. This resulted in 584 average positive differences and 584
average negative differences for each of the three drought indices. Average positive and negative
precipitation and temperature differences for each griddimate division pair were calculated

in the same way. AWC differences for each pair were calculated by subtracting the climate
division value from the grid box value. Note that AWC differences are not averages, since there

is only one AWC value for each drbox and only one AWC value for each climate division.

Multiple linear regression was used to model the relationship between the average positive and
negative drought index differenced fo FE b and temperature, precipitation, and AWC

differences o fw FE oo . Formally, the model gived observations is

w | fTow fw E o -h (2.3)

for'Q phghE R, wherg R R FE Ar  are unknown coefficients to be estimated by

ho oo FE fo and- B FE R are independent random variables each with zero mean and
unknown variance. Six responseighies & @ were used in this analysis: average positive Z
Index, average negative Z Index, average positive PDSI, average negative PDSI, average
positive PHDI, and average negative PHDI. Four predictprs T were used in this analysis:

average tempetare difference, average precipitation difference, AWC difference, and one

constant. Response variables and predictors each contained 584 obserwatiang T

The relationships between drought indices and temperature, precipitation, and AWC can be

looked at in a slightly different way, in order to supplement the multipésar regression. fie
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PDSI, temperature, and precipitation time series, as well as the difference inaf\&Dalyzed
for two grid boxclimate division pairs: (1) one that experiense®ll average positive (and
negative differences (i.dbetweenl and 1), and (2) one that experiences large average positive

di fferences (i .e., O 2) and-2.arge average neg

The differences between the grid box drought time series and climate division drought time
series were alsosed to create histograms. For each griddlorate division pair, the number of
differences in the grid box and climate division PDSI where the absolute value was greater than
or equal to twavas countedthe same was done for differences in the griddoad climate

division PHDI. This resulted in 584 numbers, one for each griechmate division pair. These

raw numbers were then converted to percentages of total historical time (111 years). The
percentages of total time were binned to create twodtetasi one for differences in PDSI,

and one for differences in PHDI.

Average difference between grid and climate division PDSI values for historically dry, wet, and
near normal periodsere also calculated hese periodare definedy, first, calculatirg a

weighted average PDSI value for the entire study area using climate division PDSI values and
climate division areas as weights. Dry periods are classified as PDSI values less than or equal to
-2; wet periods are classified as PDSI values greater thegqual to 2; and near normal periods

are classified as PDSI values betwe2iand 2. Differences are calculated by subtracting the

climate division PDSI value from the grid box PDSI value and taking the absolute value.
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2.3.Results

The resampled IS test regcts the null hypothesis that both the grid box and climate division Z
Index data are generated from the same distribution for 81 of the 584 pairs at the 95%
significance level (Tablg-1). Similarly, the test rejects the null hypothesis that the PDSI and
PHDI values come from the same distribution for 412 and 416 pairs, respectivelyZTgbkss
expected, resampling decreases the number of times thatShed( rejects the null hypothesis
for all three indices; the reductions in number of rejectiadle considerable at the 99%

significance level, are small at tB8% significance level (Table-A in Appendix A).

Table 2.1 | Resampled Tw«bample KS Test Results
Drought Index | p-value | Number (%) of Grid Box-Climate Division
Pairs for which the Null Hypothesis is Rejected

Z p<0.01 |53 (9%)

p<0.05 | 81 (14%)

PDSI p<0.01 | 187 (32%)

p<0.05 | 412 (71%)

PHDI p<0.01 | 180 (31%)

p<0.05 | 416 (71%)

Notes: The K-S test returns a test decision for the null hypashibat the two data samples are from the same
continuous distribution; the test either rejects or fails to reject the null hypothesis. Numbers and percentages of grid
box-climate division pairs where p<0.05 also include those where p<0.01.

The resample-S tests yield three common groups of test decisions among the grid box
climate division pairs. In one group, the test fails to reject the null hypothesis for all three

drought indices. The medians of the pair distributions in this group are very ctbsesaime,
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and the tails of the distributions are similar in density (Figu2ai22.2c). In another group, the

test rejects the null hypothesis for the PDSI and PHDI only. Z Index distributions for pairs in this
group are similar (Figurg.2d), while PD$and PHDI distributions may reflect shifts in the

median (Figur@.2e) or changes in densities near the tails (Figite @nd 22f). In the last

group, the test rejects the null hypothesis for all three drought indices. EDFs in this group may be
remarkaly different, showing large shifts in the medians (Figu2g2 2.2i). In addition to

tangible differences in probability distributions, drought at the coarser, climate division scale and

drought at the finer, grid box scale are spatially different (Eigda and?.3b).

0.5 0.5 0.5
0 0 0
-4-2 0 2 4 6 8 -5 0 5 -5 0 5
=
3§ ) o) o6
505 0.5 0.5
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=
E 0 0
5 -5 0 5 10 -5 0 5 -5 0 5
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0 0 0
4 -2 0 2 4 6 -5 0 5 -5 0 5
Z Index PDSI PHDI

Figure 2.2 | EDFs of historical monthly Z, PDSI, and PHDI for the grid {mtimate division
pairs highlighted in Figure 4. The-& test rejects the null hypothesis foii)e
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Figure 2.3 | Map ofa) May 2001 PDSI calculated at thkemate divisionspatial resolutioand
b) May 2001 PDSI calculated at the Dl&y 0.5 latitude/longitude spatial resolution

There are no obvious spatial patiein the resampled-& test results for PDSI and PHDI
(Figure2.4a and2.4b). A map of the resampled & test results for the Z Index is not shown due
to the small number of grid betimate division pairs where the null hypothesis is rejected
(Table2.1). The resampled 4§ test results for PDSI and PHDI, however, are spatially congruent
with average positive and negative differences in grid box and climate division PDSI and PHDI
(Figure2.5ai 2.5d). The null hypothesis is rejected for much of the fatexa portion of the

study area, particularly grid bestimate division pairs along the Rocky Mountains, and along the
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southern periphery. Similarly, average positive and negative drought index differences tend to be
larger in magnitude and can excegd The resampled S test fails to reject the null hypothesis
for much of the interior of the study area, where average positive and negative index differences

tend to be smaller in magnitude.

For monthly PDSI and PHDI, the difference between the grid bime\and the climate division
value is greater than or equal to two between zero and sixty percent of the timaif®rty
percent of grid boxclimate division pairs experience PDSI differences greater than or equal to
two at least thirty percent of the nfFigure2.6a). Similarly, fifty-six percent of grid box

climate division pairs experience PHDI differences greater than or equal to two at least thirty

percent of the time (Figur26b).

There are no direct correlations between average drought indeveddes and average
temperature and precipitation differences or AWC differences, as evidenced by low coefficient
of determination values (Table Airi Appendix A). While these are not predictive relationships,
some are significant. Average temperature jarecipitation differences are significant (p<0.01)
for both average positive and negative differences in all three drought indices. AWC is
significant (p<0.05) for average negative PDSI and PHDI differences only. For one of the grid
box-climate divisionpairs where average positive and negative differences are large, the
difference in AWC is small, while both temperature and precipitation value$ \erymes
drasticallyi between the grid and climate division (Figérd in Appendix A). For one of the

grid boxclimate division pairs where average positive and negative differences are small, the

difference in AWC is quite large; and, while temperature and precipitation values vary between
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the grid and climate division, precipitation values aremezlose for this pair (Figure A.2n
Appendix A), where average positive and negative differences are small, than the previous pair

(FigureA.1 in Appendix A, where average positive and negative differences are large.

Resampled K-S Test Results (PDSI)
I:’ Fails to Reject Null Hypothesis
- Rejects Null Hypothesis
:I State Boundary

[ | Climate Division Boundary
: Grid Boundary
[ridat-11325,46.75

D MT Climate Division 1
[cridat-121.75, 4325

OR Climate Division 5

[ Jcridat-11675,48.75

ID Climate Division 1

200

[ IKilometers

Resampled K-S Test Results (PHDI)
Fails to Reject Null Hypothesis
~ - Rejects Null Hypothesis

—~ A) I:l State Boundary

I:l Climate Division Boundary
Y : Grid Boundary

B [Jaridat-113.25,46.75
D MT Climate Division 1

[ Gridat-121.75,43.25

OR Climate Division 5

[ Gridat-116.75, 4875
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Figure 2.4 | Maps of resampled twsample KS test results for (a) PDSI and (b) PHDI. Grid
boxes and climate division outlined in color correspond to those identified in Figure 2.

—~/
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Figure 2.5 | Mapsof (a) average positive PDSI difference, (b) average negative PDSI difference,
(c) average positive PHDI difference, and (d) average negative PHDI difference.
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