A joint project of the Graduate School, Peabody College, and the Jean & Alexander Heard Library

Title page for ETD etd-03252019-181617

Type of Document Master's Thesis
Author Paul, Eden Pauline Roshan
URN etd-03252019-181617
Title Plasmonic Gold Nanostructures for Biodiagnostics and Photothermal Therapeutics
Degree Master of Science
Department Chemical Engineering
Advisory Committee
Advisor Name Title
Rizia Bardhan Committee Chair
  • therapeutics
  • nanomedicine
  • biodiagnostics
  • gold nanostructures
Date of Defense 2019-05-10
Availability restrictsix
Cardiovascular diseases and cancer are the two leading causes of death worldwide. Both sets of diseases urgently require more personalized treatments and early diagnosis. Plasmonic nanostructures in recent years have developed the capacity to serve as instrumental platforms for the mitigation of cancer and for the detection of disease biomarkers. In this work, there are two different types of gold nanoparticles. There exist previously synthesized multibranched gold nanoantennas (MGNs) or nanostars. To allow for their biocompatibility and use in biodiagnostic applications, they are required to have further surface functionalization as well as appropriate characterization. In order to exploit the light-to- heat conversion property of gold nanoparticles, the synthesis of gold-coated liposomes that have the potential to encapsulate chemotherapeutic or immunotherapeutic agents which will be released at mild hyperthermia conditions has been attempted. We engineered a portable and reusable sandwich assay in a microfluidic device using the MGNs to detect low concentrations (30 pg/mL) of our antigen of interest, cardiac Troponin I which is a biomarker for myocardial infarction if found to be between the ranges of 0.01-0.1 ng/mL. In addition, we also studied the design of the gold-coated liposomes and established a protocol to synthesize tunable nanostructures capable of delivering drug when illuminated with light between 600 and 1000 nm in wavelength. This work illustrates the adaptable potential of metallic nanostructures in the field of personalized nanomedicine, in the capacity of their applications within therapeutics and diagnostics.
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[campus] Paul.pdf 2.39 Mb 00:11:03 00:05:41 00:04:58 00:02:29 00:00:12
[campus] indicates that a file or directory is accessible from the campus network only.

Browse All Available ETDs by ( Author | Department )

If you have more questions or technical problems, please Contact LITS.