
EGFR Rearrangements as Oncogenic Drivers and Therapeutic Targets in Lung Cancer 

By 

Jean-Nicolas Gallant 

Dissertation 

Submitted to the Faculty of the 

Graduate School of Vanderbilt University 

in partial fulfillment of the requirements 

for the degree of 

DOCTOR OF PHILOSOPHY 

in 

Cancer Biology 

May, 2017 

Nashville, TN 

 

Approved: 

Christopher Williams, M.D., Ph.D. 

Robert Coffey, M.D. 

Rebecca Cook, Ph.D. 

Sally York, M.D., Ph.D. 

Christine Lovly, M.D., Ph.D. 



Copyright © 2017 by Jean-Nicolas Gallant 

All Rights Reserved



 iii 

To Jessica, without whom none of this would be possible



 iv 

ACKNOWLEDGEMENTS 
 
 Science is a human endeavor, and the research described herein would not have been possible without 
the support of an incredible team of people. I am delivering this work today thanks to the help of a small town; 
if it takes a village to raise a child, then, surely, it must have taken a medium-sized township to get me here. 
 Logistically, none of this would have happened without the generosity of my sponsors and institution—
thank you to Thermo Scientific, the AACR, the V-Foundation, the NIH / NCI, and Vanderbilt. I particularly need 
to thank the Vanderbilt MSTP for taking a chance on an everyday-normal-guy (me) with a knack for cancer 
biology. Thank you to the leadership team, past and present; to Drs. C. Williams, Grundy, Estrada, York, 
Winder, Dermody, Bills, Swift, M. Williams and, last but definitely not least, Melissa for your unending kindness, 
understanding, support, and flexibility over the years. This is the best MST program in the country—thanks to 
you. I’d be remiss not to thank Vanderbilt, as a whole, for creating a collegial atmosphere chock-full of 
resources, cores, and outsource providers that have made my time in lab all that much more productive and 
enjoyable.  

The highly translational nature of this research would not have been possible without an outstanding 
team of collaborators with diverse expertise. Here, at Vanderbilt, I have to thank the groups with whom we held 
regular lab meetings and those individuals who shaped me and the science in this dissertation: thank you to 
the Pietenpol lab (especially Jennifer, Brian Lehmann, Tim Shaver, and Scott Beeler); the Quaranta lab (Vito 
and Darren Tyson); and the Structural Biology–Precision Medicine working group—the Arteaga lab (Carlos, 
Valerie Jansen, Monica Red-Brewer, Ariella Hanker, and Sarah Croessmann) and the Center for Structural 
Biology (Jens Meiler, Johnathan Sheehan, Tony Capra et. al). Thanks to all those with whom I otherwise 
interacted on the 6th floor of PRB (the best floor of the VICC); thank you for your time, input, and friendship. No 
thanks to the Balko lab and Mellissa Nixon for their constant chicaneries. The foundation [sic] of this work was 
data provided by the awesome folks at Foundation Medicine; special to Vincent Miller, Siraj Ali, Doron Lipson, 
Phil Stephens, Jeff Ross, Deborah Morosini, Sohail Balasubramanian, and Kyle Gowen for working with, 
supporting, and advocating for Dr. Lovly and I—it has been a pleasure and I hope to see you in Cambridge 
sometime soon. Finally, thank you to our clinical collaborators at Memorial Sloan Kettering Cancer Center 
(Marc Ladanyi, Mark Kris, and Raghu Chandramohan), Baylor Sammons Cancer Center (Kartik Konduri and 
Andrew Whiteley), Robert H. Lurie Comprehensive Cancer Center of Northwestern University (Young Kwang 
Chae and Francis Giles), the Addario Foundation (Barbara Gitlitz [USC] and Tiziana Vavalà [Torino]), Winship 
Cancer Institute of Emory (Taofeek Owinoko, Suresh Ramalingam, and Satyanarayan Reddy), and Abramson 
Cancer Center of the University of Pennsylvania (Vijay Peddareddigari and Beth Eaby-Sandy) for being willing 
to pool resources to maximize the impact of this research. I hope to have the pleasure of meeting you all in 
person down the road. 

To my dissertation committee: thank you for your patience, understanding, and guidance. More so than 
a better scientist, you have made me a better person. I leaned on each of you during tough times, and you 
pushed back—helping me realize that I had the strength and will to keep going when I did not think I did. 
Special thanks to Dr. Williams for introducing me to the YAMCs, to Dr. Coffey for his bottomless experience 
with EGFR, to Dr. Cook for reminding me to strive for breadth vs. depth of scientific knowledge, to Dr. York for 
embodying the ideal warm/caring physician and cold/sharp scientist duality, and to Dr. Lovly for, well, 
everything. I very much appreciate the time each of you set aside for my scientific formation and can only wish 
to have spent more time with you. 

I have been fortunate to have spent the past few years in a friendly lab environment interacting with 
some awesome people. Thank you to the remnants of the Pao lab; to Katie Hutchinson for normalizing late 
night lab, to Caroline Nebhan for keeping me happy and well fed, to Eiki Ichihara for always smiling (even if it 
may have been a misunderstanding), to Abudi Nashabi for staying one step ahead of every lab need, and to 
Catherine Meador for serving as a shining example of all that is right with the world. Thank you to Merrida 
Childress, the work wife, the ying to my yang, for keeping me honest, questioning my science, and making the 
past few years truly enjoyable. Thank you to Yingjun Yan, lab technician extraordinaire, for keeping everything 
in order, asking all the right questions, and always smiling—you are an inspiration. Thank you to Huan Qiao for 
teaching me everything that I know about molecular biology. To Karinna Almodovar: thanks for lending an ear, 
chatting, and keeping me sane. To David Westover: thanks for destroying any/all archetypes I had in my head 
by way of your hip-hop loving, socially conscious, OU-educated, sharp, small-scale self. To Zhenfang Du: 
thank you for picking up this work where I have left off and apologies for not spending more time over 
beverages these past few months. To Vincent Huang: I only ever make fun of you because your future is so 



 v 

incredibly bright; keep going! To Gabrielle Hampton: keep working this hard and it will pay off. To all others that 
have come in and out of lab: thank you for brightening my life. 

I could not have spent all this time in lab without the support, perspective, and refreshment provided by 
my family and friends. Thanks to the CBSA, MSTPals, and Handleton crew for pulling me out of lab at all the 
right times. Thank you to Mom, Dad, and Aunt Wil for your understanding and for taking care of Jessica and 
Brigitte during all the best and the worst times. Thank you to Mamour et Grandpapa for your blind support; to 
Mamie for the prières; and Josée for encouragement. PaPa: thanks for leading the way and showing me what 
is important and what is possible. Etienne: thanks for putting the heat on from behind and making sure I do my 
best; no doubt you’ll fly ahead in the coming years. Maman: thanks for hanging in there during the tough times. 
Wilbur & Sam: I’m sorry, and I miss you. Jessica: you know I could not have done any of this without you; 
thank you for coming along for the journey. Brigitte: allô! 

Finally, while most would thank their mentor first and foremost, I am thanking mine last, but definitely 
not least. Dr. Lovly belongs here, at the back end of a long list of names; a senior author coordinating all of the 
above. Even with the help from all the aforementioned people, I’m not so sure I could have put together this 
dissertation without Dr. Lovly’s invisible hand. I can only hope to one day emulate your focus, selflessness, 
dedication, and attention to detail. Thank you for taking a chance on me, for spending way too much time 
making sure I get things right, for your patience in the face of my deadline-driven timing, for creating a warm 
and caring lab atmosphere—the list goes on and on. You have been an inspiration, a mother, a boss, and a 
mentor. You’ve managed to make me a better communicator, scientist, and person—by way of shared 
laughter, troubleshooting, editing, crying, writing, cursing, and winning. Thank you for everything that you have 
done and are doing to aid in my development. I will continue to lean on you as I navigate the medical and 
research years ahead. I am fortunate to have trained with you and am excited to see where you go. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The work in this dissertation is based on a handful of nameless lung cancer patients that were willing to jump 

into the unknown for hope and for science. Thanks to you, your families, and your sacrifices. Godspeed.



 vi 

PREFACE 
 

This dissertation is being submitted to the Faculty of the Graduate School of Vanderbilt University in 
partial fulfillment of the requirements for the degree of Doctor of Philosophy. The research herein—detailing 
the discovery and the initial characterization of epidermal growth factor receptor (EGFR) rearrangements in 
patients with lung cancer—was conducted by Jean-Nicolas Gallant (me), under the supervision of Dr. Christine 
M. Lovly, M.D., Ph.D. between 2014 and 2016. This work is, to the best of my knowledge, original, except 
where acknowledgements and references are made to previous work. For example, part of this work already 
has been published: 
 
Gallant JN, Sheehan JH, Shaver TM, Bailey M, Lipson D, Chandramohan R, Brewer MR, York SJ, Kris MG, 
Pietenpol JA, Ladanyi M, Miller VA, Ali SM, Meiler J, and Lovly CM. EGFR Kinase Domain Duplication (EGFR-
KDD) Is a Novel Oncogenic Driver in Lung Cancer That Is Clinically Responsive to Afatinib. Cancer Discovery. 
2015 Nov 1;5(11):1155–63. 
 
Konduri K*, Gallant JN*, Chae YK, Giles FJ, Gitlitz BJ, Gowen K, Ichihara E, Owonikoko TK, Peddareddigari V, 
Ramalingam SS, Reddy SK, Eaby-Sandy B, Vavala T, Whiteley A, Chen H, Yan Y, Sheehan JH, Meiler J, 
Morosini D, Ross JS, Stephens PJ, Miller VA, Ali SM, and Lovly CM. EGFR Fusions as Novel Therapeutic 
Targets in Lung Cancer. Cancer Discovery. 2016 Jun 2;6(6):601–11. 
*co-first authors 
 
Some final logistical points: references follow each chapter; endnotes (also found at the end of each chapter) 
are indicated as superscripted miniscule letters; and tables in landscape orientation have no pagination. 
 
Enjoy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 vii 

TABLE OF CONTENTS 
 

Page 
 
DEDICATION ....................................................................................................................................................... iii 
ACKNOWLEDGEMENTS ..................................................................................................................................... iv 
PREFACE............................................................................................................................................................. vi 
LIST OF TABLES ................................................................................................................................................. ix 
LIST OF FIGURES ............................................................................................................................................... x 
 
Chapter 
 
I: Introduction  ................................................................................................................................................. 1–30 
 Overview ................................................................................................................................................... 1 
 Clinical Background .................................................................................................................................. 1 
  Lung Adenocarcinoma .................................................................................................................. 1 
  From Phenotype to Oncogene Addiction ...................................................................................... 1 
  EGFR-mutant Lung Cancer .......................................................................................................... 3 
 Molecular Background .............................................................................................................................. 5 
  The HER Family of Receptors ...................................................................................................... 5 
  Architecture, Activation, and Multimerization of EGFR ................................................................. 5 
  Signaling Downstream of EGFR ................................................................................................... 7 
  Learning from EGFR Mutations to Design Better Therapies ........................................................ 9 
 Purpose of these Studies ........................................................................................................................ 11 
 References ............................................................................................................................................. 13 
 Notes ...................................................................................................................................................... 29 
 
II: EGFR-RAD51 ........................................................................................................................................... 31–42 
 Abstract ................................................................................................................................................... 31 
 Statement of Significance ....................................................................................................................... 31 
 Introduction ............................................................................................................................................. 31 
 Frequency of EGFR Alterations in Lung Cancer .................................................................................... 31 
 Case Reports .......................................................................................................................................... 31 
 EGFR-RAD51 is Oncogenic ................................................................................................................... 33 
 Computational Modeling of EGFR-RAD51 ............................................................................................. 35 
 EGFR-RAD51 can be Therapeutically Targeted with Existing EGFR Inhibitors ..................................... 35 
 Discussion .............................................................................................................................................. 35 
 Methods .................................................................................................................................................. 38 
 References ............................................................................................................................................. 41 
 
III: EGFR-KDD .............................................................................................................................................. 43–56 
 Abstract ................................................................................................................................................... 43 
 Statement of Significance ....................................................................................................................... 43 
 Introduction ............................................................................................................................................. 43 
 Case Report ............................................................................................................................................ 43 
 Frequency of EGFR-KDD in Lung and Other Cancers ........................................................................... 44 
 The EGFR-KDD is Oncogenic ................................................................................................................ 44 

Computational Modeling Demonstrates that EGFR-KDD can form Intra-Molecular Dimers .................. 44 
The EGFR-KDD can be Therapeutically Targeted with Existing EGFR-TKIs ......................................... 47 
Treatment of the Index Patient with Afatinib ........................................................................................... 47 
Acquired Resistance to Afatinib .............................................................................................................. 47 
Discussion .............................................................................................................................................. 47 
Methods .................................................................................................................................................. 50 
References ............................................................................................................................................. 54 
 
 



 viii 

IV: Future Directions ..................................................................................................................................... 57–80 
 Overview ................................................................................................................................................. 57 
 EGFR-RAD51: Ongoing Work and Future Directions ............................................................................. 57 
  Creating a Cell Line Model of EGFR-RAD51 .............................................................................. 57 
  Testing Homologous Recombination in Cells Harboring EGFR-RAD51 ..................................... 58 
  Determination of EGFR-RAD51 Mode of Activation and Signaling ............................................ 60 
 EGFR-KDD: Ongoing Work and Future Directions ................................................................................. 63 
  Creating a Cell Line Model of EGFR-KDD .................................................................................. 63 
  Maximizing Inhibition of EGFR-KDD ........................................................................................... 65 
  Acquired Resistance to EGFR-TKIS in the Setting of EGFR-KDD ............................................. 65 
  Adding Experimental Support to the Intra-Molecular Asymmetric Dimer Model ......................... 67 
 Methods .................................................................................................................................................. 71 
 References ............................................................................................................................................. 74 
 Notes ...................................................................................................................................................... 80 
 
V: Discussion  ..................................................................................................................................................... 81 
 Summary of Findings .............................................................................................................................. 81 
 EGFR Rearrangements in Lung Adenocarcinoma ................................................................................. 81 
 EGFR Rearrangements and the Biology of EGFR ................................................................................. 82 
 Conclusion .............................................................................................................................................. 82 
 References ............................................................................................................................................. 84 
 Notes ...................................................................................................................................................... 88 
 
Appendix .................................................................................................................................................... 89–115 

Chapter II Appendix ................................................................................................................................ 89 
Chapter III Appendix ............................................................................................................................. 102 
Chapter IV Appendix ............................................................................................................................. 110 
References ........................................................................................................................................... 115 

  



 ix 

LIST OF TABLES 
 

Main Tables Page 
 
1.1:  EGFR-TKIs for the treatment of NSCLC ................................................................................................. 12 
 
2.1:  Clinical characteristics of patients with NSCLC harboring EGFR kinase fusions ................................... 32 
 
3.1:  The EGFR-KDD is a recurrent alteration ................................................................................................ 46 
 
Appendix Tables 
 
S2.1:  Summary of EGFR alterations in NSCLC identified by FoundationOne ................................................. 89 
 
S2.2:  Summary of genomic coordinates for the kinase fusions identified in this study .................................... 90 
 
S2.3:  Results of MTT curve fitting from Prism .................................................................................................. 98 
 
S3.1: Results of MTT curve fitting from Prism ................................................................................................ 108 
 
S4.1:  Primers used for EGFR-RAD51 cell line engineering using the CRISPR-Cas9 system ...................... 109 
 
S4.2:  Site-directed mutagenesis primers for use with EGFR-RAD51 ............................................................ 113 
 
S4.3: Site-directed mutagenesis primers for use with EGFR-KDD constructs ............................................... 114 
  



 x 

LIST OF FIGURES 
 

Main Figures Page 
 
1.1:  Progressive subtyping of lung cancer ....................................................................................................... 2 
 
1.2:  Refinement in the treatment of lung cancer .............................................................................................. 4 
 
1.3:  Overview of EGFR architecture ................................................................................................................ 6 
 
1.4:  Activation and multimerization of EGFR ................................................................................................... 8 
 
1.5:  Overview of EGFR signaling ................................................................................................................... 10 
 
2.1:  EGFR fusions are clinically actionable ................................................................................................... 34 
 
2.2:  EGFR-RAD51 is an oncogenic EGFR alteration .................................................................................... 36 
 
2.3:  EGFR-RAD51 is therapeutically targetable with EGFR inhibitors .......................................................... 37 
 
3.1:  The EGFR-KDD is an oncogenic EGFR alteration ................................................................................. 45 
 
3.2: The EGFR-KDD can be therapeutically targeted with existing EGFR TKIs ........................................... 48 
 
3.3: Serial chest CT scans of 33-year-old male with lung adenocarcinoma harboring EGFR-KDD  
 documenting response to afatinib and subsequent acquired resistance ................................................ 49 
 
4.1:  Utilizing the CRISPR/Cas9 system to promote EGFR-RAD51 formation in cells ................................... 59 
 
4.2: Proposed key residues for EGFR-RAD51 dimer and oligomer formation .............................................. 61 
 
4.3: Determining how EGFR-RAD51 propagates downstream mitogenic signaling ...................................... 62 
 
4.4: Development of a conditionally reprogrammed cell line from the index EGFR-KDD patient .................. 64 
 
4.5: Maximizing inhibition of the EGFR-KDD ................................................................................................. 66 
 
4.6: Comparison of WT-EGFR activation and putative EGFR-KDD auto-activation ..................................... 68 
 
4.7: Key residues for EGFR-KDD intra- and inter- molecular dimerization and function ............................... 69 
 
4.8: Expected effects of EGFR-KDD dimerization-inhibiting point mutations ................................................ 70 
 
Appendix Figures 
 
S2.1:  Additional information for Patient 1 ......................................................................................................... 91 
 
S2.2:  Additional information for Patient 2 ......................................................................................................... 92 
 
S2.3:  Additional information for Patient 3 ......................................................................................................... 93 
 
S2.4:  Additional information for Patient 4 ......................................................................................................... 94 
 
S2.5:  Characterization of EGFR-RAD51 in NR6 cells ...................................................................................... 95 
 



 xi 

S2.6:  Relative stability of EGFR-WT, -L858R, and -RAD51 ............................................................................ 96 
 
S2.7:  Structural model of an EGFR-RAD51 filament ....................................................................................... 97 
 
S2.8:  On-target inhibition of EGFR-RAD51 by EGFR-TKI ............................................................................... 99 
 
S2.9:  Cetuximab inhibits ligand-induced activation of downstream signaling pathways  
 in cells expressing EGFR-RAD51 ......................................................................................................... 100 
 
S2.10: cDNA sequence of EGFR-RAD51 ........................................................................................................ 101 
 
S3.1: Sequencing reads of EGFR-KDD in index patient with lung adenocarcinoma ..................................... 102 
 
S3.2: cDNA sequence of the EGFR-KDD ...................................................................................................... 103 
 
S3.3: Sequencing reads identifying EGFR-KDD in a lung adenocarcinoma tumor from TCGA .................... 104 
 
S3.4: Autophosphorylation of endogenous EGFR-KDD in A1235 cells ......................................................... 105 
 
S3.5: Colony formation of NR6 cells expressing EGFR variants ................................................................... 106 
 
S3.6: Efficacy of EGFR TKIs in endogenous and ectopic models of the EGFR-KDD ................................... 107 
 
S4.1: Comparison of EGFR-KDD sequences ................................................................................................ 110 
 
S4.2: Lack of protein expression from degenerate EGFR-KDD constructs ................................................... 111 
 
S4.3: Creation of EGFR-KDD single mutants from a construct with two identical kinase domains ............... 112 
 

















!

!
!
"#$%&'!()*+!,-.#/0.#12!023!4%5.#4'&#60.#12!17!89":!
,;!"#$%&!#'!&()*+$,(+$-.%$!$("%/(0*1(#+,"%$(*1%$!2345!*.1(6*1(#+7!*$*81%$!'/#"!9::;<=!>#&#/?!.#//%?8#+$!1#!2345!8/#1%(+!$#"*(+?!'/#"!4()-/%!:=@=!<;!/(AA#+!
$(*)/*"!*+$!?8*.%!'(&&(+)!"#$%&!#'!1B%!*?C""%1/(.!$("%/!#'!1B%!2345!DEF!9GFH!I3J;!9:IK<<!)%+%/*1%$!-?(+)!>B("%/*!9:IL<=!DB%!*.1(6*1#/!M(+*?%!(?!.#&#/%$!
+*6CN!*+$!1B%!/%.%(6%/!9%+0C"*1(.*&&C!*.1(6%<!M(+*?%!(?!.#&#/%$!$*/M!)/%%+=!E%C!.#+1*.1!/%?($-%?!*1!1B%!*?C""%1/(.!(+1%/'*.%!*/%!B()B&()B1%$!(+!#/*+)%!96*&(+%!OLP<!
*+$!"*)%+1*!9(?#&%-.(+%!QR;<=!=;!/(AA#+!$(*)/*"!*+$!?8*.%!'(&&(+)!"#$%&?!#'!1B%!.#"8&%1%!2345!"#+#"%/!9:;L<N!$("%/!9:K;<N!*+$!1%1/*"%/!9:;R<!)%+%/*1%$!-?(+)!
>B("%/*9:IL<=!5(AA#+!.#&#/?!.#//%?8#+$!1#!2345!8/#1%(+!$#"*(+?!'/#"!4()-/%!:=@N!%S.%81!'#/!*$$(1(#+*&!DEF?!(+!$*/M!)/%%+N!.B*/1/%-?%N!*+$!?MC!A&-%=!234!(?!
8/%?%+1%$!*?!*!?8*.%,'(&&(+)!A%()%!"#$%&=!2345,2345!(+1%/*.1(#+?!*/%!B()B&()B1%$N!(+.&-$(+)!1B%!8/#8#?%$!2>F!?-A,$#"*(+!TTT!9:;R<!*+$!TU!9:RO<!#&()#"%/(0*1(#+!
(+1%/'*.%?=!!

P!



 9 

binding) domains onto EGFR’s C-term activates three main signaling pathways: the MAPK, PI3K, and PLC-γ 
signaling pathways (163). The proteins that directly interact with activated (auto-pY) EGFR can generally be 
categorized as: positive regulators of mitogenic signaling, such as the kinase SRC, the phospholipase PLC-γ, 
and the transcription factor STAT3; adaptor/scaffolding proteins with no catalytic activity, but with the ability to 
assemble and regulate protein complexes, such as GRB2 and SHC; and negative regulators of signaling such 
as the E3 ubiquitin ligase CBL and phosphatase SHP1 (163). At least 65 different proteins with SH2 or PTB 
domains have been validated as binding to EGFR’s C-term pYs (165). These interacting proteins are often 
multivalent—having multiple SH2, PTB, SH3, PH, or other domains —and mediate interactions with additional 
proteins or with the cell membrane (166). When the multivalency of adaptor proteins (≥ 65 effectors), the 
possible variety of autophosphorylated sites (~12 tyrosines) on EGFR’s C-term, and the receptor’s regulation 
by different growth factors and oligo/hetero/homo-dimerization (611 possible combinations) are all considered, 
the picture of EGFR signaling becomes complex and nuanced.  
 Much work has gone into untangling and simplifying EGFR signaling (167,168). When the entirety of 
the known signaling pathway is mapped out, a notable feature becomes apparent: a bowtie (or hourglass) 
structure (169). The vast ligand–EGFR–SH2/PTB network of receptor signaling complexes converges onto just 
a handful of molecules, which themselves activate a variety of signaling cascades (Figure 1.5B). The critical 
nodes in EGFR signaling are a series of previously mentioned non-receptor tyrosine kinases (non-RTKs), 
small GTPases, and phosphatidylinositol phosphates (PIPs). Specifically, the nodes in EGFR signaling are the 
non-RTKs PYK2 and SRC, the small GTPases RAS and RAC, and the PIPs PI4,5-P2, and PI3,4,5-P3 (169)x. 
As the complexity of EGFR signaling via PYK2 and SRC is being untangled (170,171), the field has forged 
ahead with the simplified view that EGFR signals primarily through the MAPK (RAS node) and or PI3K/AKT 
(PIP node) signaling pathways (172)y. 
 

Learning from EGFR Mutations to Design Better Therapies 
 Since EGFR was recognized as an oncogene due to its homology to v-erb-B, a retroviral protein that 
enables avian erythroblastosis virus to transform chicken blood cells (173), the study of cancer and EGFR 
have inexorably been linked (174,175). EGFR overexpression in brain, head & neck, lung, pancreatic, and 
colorectal cancers led to myriad clinical trials aimed at targeting the protein for therapeutic effects (113). While 
EGFR-TKIs are FDA-approved against cancers in a couple of different body sites (113,176), the inhibitors have 
their most significant effects against EGFR-mutant lung adenocarcinoma. At the same time, cetuximab, the 
anti-EGFR antibody, has been found to be most clinically effective for head & neck (177) and colorectal 
cancers (178). These clinical findings lead to basic questions: why are EGFR-TKIs most effective in lung 
cancer and why are anti-EGFR antibodies most effective in head & neck and colorectal cancers? The answers 
to these questions may have to do with EGFR’s mechanism of activation. Anti-EGFR antibodies are thought to 
be effective in colorectal and head & neck cancers because these cancers express locally high levels of 
EGFR-activating ligands and because anti-EGFR antibodies block ligand binding (175). At the same time, 
EGFR-TKIs are effective against certain lung adenocarcinomas because these cancers harbor recurrent 
mutations in the kinase domain—where TKIs bind (63-65). While EGFR is implicated in colorectal, head & 
neck, and pancreatic cancers, EGFR mutations in these malignancies are not consistently identifiedz. 
Recurrent genetic alterations are useful in cancer biology because they hint at how an oncogene’s product is 
activated. Along these lines, study of lung adenocarcinoma associated EGFR mutations has been critical in 
pushing forward understanding of EGFR biology. 
 Studies of the common lung adenocarcinoma associated EGFR mutations (L858R and ex19del) have 
provided further insights into the biology of the receptor. Studies of EGFR-L858R have demonstrated that it is 
≥ 50 times more active than wild-type (WT) EGFR (66) as a result of preferentially adapting the active 
conformation (180). More importantly, studies on EGFR-L858R have added a plethora of evidence to support 
EGFR’s activation via receptor-mediated asymmetric dimerization. While monomeric EGFR-L858R is active in 
the absence of EGF (181,182), the protein is even more active as part of an asymmetric dimer (183), 
especially when it adopts the receiver position (184). In fact, the oncogenic properties of EGFR-L858R may be 
entirely driven by the greater propensity of these mutants to form active dimers (185). The ECD also appears 
to play a key role in the activation of mutant EGFR, even in the absence of ligand (186). Study of EGFR 
ex19del has likewise been generalized to help with the understanding of the mechanism of activation of similar 
deletions in other oncogenes (187). In due turn, increased knowledge about the structure and function of 
EGFR mutations has enabled the development of more potent irreversible second-generation (188) and third-
generation (189,190) EGFR-TKIs for the treatment of lung adenocarcinoma.  



 

 
 
Figure 1.5: Overview of EGFR signaling 
A, graphical representation of phosphotyrosine-mediated recruitment of adaptors to EGFR; lines connect phosphotyrosines to adaptors and provide a quantitative 
protein interaction network for EGFR, adapted from (165). Dark red circles represent phosphopeptides at each indicated EGFR tyrosine residue; clear circles 
represent the non-phosphorylated version of each phosphopeptide; green circles represent SH2 domains; and blue circles represent PTB domains. Lines 
connecting peptides to domains indicate observed interactions, colored according to the affinity of the interaction (see legend). B, simplified bow-tie architecture of 
the EGFR signaling pathway, adapted from (169). Beige = ligands; light blue = signaling intermediaries; orange = critical nodes in EGFR signaling [non-RTKs 
(PYK2 and SRC), small GTPases (RAS and RAC), and PIPs (PI3,4,5-P3 and PI4,5-P2)]; yellow = MAPK signaling pathway (RAS node); and magenta = PI3K/AKT 
signaling pathway (PIP node). 
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There now exist over 20 well-characterized EGFR-TKIs that have undergone some clinical 
development in NSCLC (Table 1.1). First generations EGFR-TKIs were a fallout of attempting to study WT-
EGFR with small molecules (191). Although there is still some controversy (192), the majority of first-
generation EGFR-TKIs are thought to selectively bind the active mode of the TKD (which explains the 
effectiveness in EGFR-mutant lung adenocarcinoma) (180). This has been attributed to two factors: 1) the 
recognition of the active state of the kinase by certain EGFR-TKIs (193,194) and 2) the higher ATP affinity of 
mutant enzyme relative to the WT-EGFR (195). Unlike the ATP-competitive first generation EGFR-TKIs, 
second generation EGFR-TKIs, were designed to bind the TKD irreversibly in attempts to overcome acquired 
resistance. While these agents proved efficacious against models of T790M-mediated EGFR-TKI resistance 
(196,197), they failed to meet endpoints against T790M-positive EGFR-mutant lung adenocarcinoma in clinical 
trials—due to the limited therapeutic window offered by these agents (198,199). As such, third generation 
EGFR-TKIs were developed: irreversible EGFR-TKIs with a puckered ring structure that can bind the TKD 
active site in the presence of T790M (189,190,200). These agents have proven to be active in patients 
(95,201), and one of them, osimertinib, is FDA approved. However, resistance to osimertinib is emerging, 
suggesting that alternative strategies and/or EGFR-TKIs are needed (202). 
 Recent work on EGFR mutants in glioblastoma has presented another possible way to inhibit EGFR: by 
using inhibitors selective for the mutant-specific conformation of the receptor (203). TKIs can be categorized by 
generation and mode of binding, but they can also be categorized as whether they bind the active form (Type I 
inhibitors) or inactive form (Type II inhibitors) of EGFR (or their target, in general (204)). EGFR mutations found 
in glioblastoma are more responsive to Type II EGFR-TKIS (the best characterized being lapatinib) than type I 
inhibitors (such as erlotinib) (203). Though head to head data is sparse, it appears that lung adenocarcinoma 
associated EGFR mutations are, dose for dose, more potently inhibited by Type I as opposed to Type II EGFR-
TKIs; however, lapatinib still is able to inhibit certain EGFR-mutant lung cancer cell line models at clinically 
achievable doses (203,205,206). Although clinical development of lapatinib was shifted away from NSCLC (as 
the agent did not meet predetermined ORR in NSCLC), initial trials were performed in heavily pre-treated 
patients and failed to test for EGFR mutation status (205,207,208). Because there is no structural reason why 
EGFR-TKIs could not bind the inactive EGFR TKD effectively (182), more study is needed into Type II 
inhibitors in the setting of EGFR-mutant lung adenocarcinoma. This is especially true as EGFR mutants are not 
all alike and there exists a spectrum of activation between the active and inactive confirmations of the TKD 
(180). Since imatinib (a BCR-ABL TKI) was first recognized as an inactive site TKD binder (209), it has been 
generally recognized that targeting inactive states of TKDs offers clear advantages in terms of target 
selectivity, patient safety, and time to resistance (210-212). In light of the mounting success of Type II TKIsaa, 
the question is whether the inactive state of the EGFR TKD is a better target for drug discovery and therapy. 
 
Purpose of these Studies 
 We now know that EGFR mutations (≥ 85% being L858R or ex19del (179)) afflict ~20% of patients with 
lung adenocarcinoma (214). However, because EGFR mutations historically were interrogated by ‘hot-spot’ 
PCR-based methods, most known mutations are biased to fall between exons 18 and 21 (the regions that 
encodes for L858R and ex19del and which encodes the majority of the TKD). As such, there is an outstanding 
amount of basic science and clinical data regarding mutations in these exons, and there are less data 
regarding mutations elsewhere in the protein—such as in the ECD or C-term—even though hundreds of such 
mutations have been catalogued in NSCLC patients (179,215,216). At the same time, due to the limitations in 
companion diagnostics and sequencing technologies (82,217), it is likely that other EGFR variants exist in lung 
adenocarcinoma. This idea is backed by clinical data: a small proportion (up to 20%, depending on the trial) of 
patients with no detected EGFR-activating mutations show a radiographic response when treated with EGFR-
TKIs (62,218-220). While knowledge about common mutations has allowed for rational treatment of specific 
cohorts (L858R or ex19del) of EGFR-mutant NSCLC, little is known about the remaining 10–15% of EGFR 
mutations in NSCLC. The rest of these mutations—deemed rare or atypical mutations—are primarily scattered 
throughout the EGFR TKD and can mediate either sensitivity or primary resistance to EGFR-TKI therapy (221). 
The goal of these studies is to fill in this knowledge gap: to identify novel EGFR mutations in lung 
adenocarcinoma, to determine the sensitivity of these alterations to therapy, and, along the way, to uncover 
more about the biology of EGFR.  
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generation compound name generic name 1º target(s) type class binding furthest clinical 
development in NSCLC 

1 OSI744 (59) erlotinib EGFR I EGFR reversible FDA-approved (70,71) 

ZD1839 (60) gefitinib EGFR I EGFR reversible FDA-approved (62,68,69) 

GW572016 (194) lapatinib EGFR/HER2 II dual-HER reversible Phase I (208) 

BPI2009H (222) icotinib EGFR I EGFR reversible Phase III (223) 

AZD8931 (224) sapitinib EGFR/HER2/HER4 I pan-HER reversible Phase I (225) 

XL647 (226) tesevatinib EGFR/HER2/VEGFR I multitargeted reversible Phase II (227) 

ZD6474 (228) vandetanib VEGFR/EGFR/RET I multitargeted reversible Phase III (229) 

AEE788 (180,230) — EGFR/HER2 I dual-HER reversible Phase I (231) 

AZD3759 (232) — EGFR I CNS-penetrant reversible Phase I (233) 

BMS599626 (234,235) — EGFR/HER2 I dual-HER reversible Phase I (236) 

BMS690514 (237) — EGFR/HER2/VEGFR I multitargeted reversible Phase II (238) 

CUDC101 (239) — EGFR/HER2/HDAC I multitargeted reversible Phase I (240) 

2 BIBW2992 (188) afatinib EGFR/HER2 I dual-HER irreversible FDA-approved (72,73,75) 

PF299804 (197) dacomitinib EGFR/HER2/HER4 I pan-HER irreversible Phase III (199) 

CI1033 (241) canertinib EGFR/HER2/HER4 I pan-HER irreversible Phase II (242) 

HKI272 (243) neratinib EGFR/HER2/HER4 II pan-HER irreversible Phase II (244) 

EKB569 (245) pelitinib EGFR/HER2 II dual-HER irreversible Phase I (246) 

AST1306 (247) allitinib EGFR/HER2 II dual-HER irreversible Phase I (248) 

HM781 (249) poziotinib EGFR/HER2 I dual-HER irreversible Phase I (250) 

TAK285 (251) — EGFR/HER2 II dual-HER irreversible Phase I (252) 

3 AZD9291 (190,253) osimertinib EGFR T790M I mutant-selective irreversible FDA-approved (95,254) 

CO1686 (189) rociletinib EGFR T790M I mutant-selective irreversible Phase II (201) 

AC0010 (255) avitinib EGFR T790M I mutant-selective irreversible Phase I (256) 

EGF816 (257) — EGFR T790M I mutant-selective irreversible Phase I (258) 
 
Table 1.1: EGFR-TKIs for the treatment of NSCLC 
Inhibitors are categorized on generation based on their being 1st generation: reversible; 2nd generation: irreversible; and 
3rd generation: mutant-EGFR selective. In cases where compounds have several names, only the most recent compound 
name is listed. 1º targets are the targets which the compound was designed to inhibit (listed in order of cell-free IC50) with 
slashes indicating near-equal potency. The compound type (I=binds active confirmation of EGFR; II=binds inactive 
confirmation (204)) was determined based on available crystal structures and/or whether the compound was designed 
against the structure of active EGFR (PDB 2GS6) or inactive EGFR (2GS7). The inhibitor class refers to the common 
language used to describe the inhibitor. Note that clinical development is specific to NSCLC; some inhibitors, such as 
vandetanib, are FDA-approved for other indications. Not detailed in this table: natural EGFR inhibitors (e.g. erbstatin 
(259)), early tyrphostins (e.g. AG1478 (260)), molecules that never underwent clinical testing (e.g. EAI045 (261), EKI-785 
(262), PD153035 (263), WZ4002 (200)), molecules never developed for their ability to inhibit EGFR in patients with 
NSCLC (e.g. BGB283 (264), brigatinib (265)), named secondary metabolites (AZD5104 (190), OSI420 (266)), and/or 
molecules with only abstract-level data (ASLAN001, ASP8273, CNX2006, epitinib, olmutinib, PD168393,  PF06747775, 
and theliatinib).
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Notes 
 
a While human gene symbols generally are italicized with all letters in uppercase (EGFR), I will refer to genes 
in uppercase only (EGFR). As opposed to nomenclature guidelines (1), proteins also will be designated in non-
italicized uppercase. This simplified all-caps notation is meant to circumvent the ambiguity related to 
interchanging references of EGFR alterations, constructs, and mutants. 
 
b Patients usually are asymptomatic in the early stages of the disease because of the sparse pain fiber 
innervation in the lungs and because adenocarcinomas most often originate in the periphery of the lungs—
leaving patients with sufficient respiratory reserve (6,7). This presentation contrasts with that of SCLC and 
squamous NSCLC; cough, dyspnea, and hemoptysis present most frequently in patients with squamous cell 
and SCL carcinomas because of these tumors’ tendency to involve central airways (8-12). 
 
c The most used platinum doublets against lung adenocarcinoma are cisplatin/carboplatin+pemetrexed and 
carboplatin+paclitaxel (16). The latter is sometimes combined with bevacizumab, an anti-angiogenic 
therapeutic antibody, which helps boost response rates and survival (17). 
 
d Defined as the percent of patients experiencing objectively decreased tumor size per repeat imaging of the 
same tumor. ORR is typically the combined percentage of patients experiencing a complete response (CR; 
loss of detectable tumor per repeat imaging of the same tumor) and partial response (PR; loss of ≥ 30% of 
tumor per repeat imaging of the same tumor) (18). 
 
e Defined as the average time between diagnosis (or treatment initiation) and death (19,20). 
 
f Due to their signaling redundancy and synthetic lethality (46), these mutations are rarely co-occurring. Still, 
there are case reports of co-occurring driver alterations in NSCLC (47,48), especially with PIK3CA (49).  
 
g Anti-EGFR antibodies have demonstrated efficacy against lung cancer cells in vitro for decades (53). 
However, for reasons that are not completely understood, anti-EGFR therapeutic antibodies have proven less 
efficacious against NSCLC in the clinic (54,55). Still, there may be a place for anti-EGFR antibodies treating 
defined molecular cohorts of NSCLC (56). 
 
h Also known as time to progression (TTP); defined as the average time between diagnosis (or treatment 
initiation) and recurrence (radiological or clinical) (19,20). PFS is increasingly used as an endpoint in 
molecular-based clinical trials, where demonstration of efficacy is the main goal (67). 
 
i A measure of how often a particular event happens in one group compared to how often it happens in the 
control group. In this case, the risk of an event—progression or death—while being treated with gefitinib versus 
(control) platinum doublets at 12 months is 0.48—just under 50%. 
 
j This is to say: patients with EGFR-mutant lung adenocarcinoma treated with a first generation EGFR-TKI 
(erlotinib or gefitinib) have the same overall survival as matched patients (EGFR-mutant lung adenocarcinoma) 
treated with chemotherapy. It is unclear whether this finding is due to patient selection, poor trial design, and/or 
patient crossover (86). It should also be noted that patients with EGFR-mutant NSCLC have a longer OS than 
patients with EGFR-mutant-negative NSCLC, regardless of treatment modality (83-85). 
 
k Immunotherapy (such as PD/L-1 inhibitors) has shown promising results (23) with respect to increasing OS in 
patients with NSCLC (partly because the trials are designed/powered to test OS); however, the role of these 
agents in EGFR-mutant lung adenocarcinoma remains contentious (87). 
 
l In fact, in various unsupervised clustering analyses, EGFR is more closely related to ACK or SRC than to any 
RTK (100). EGFR’s inactive confirmation bears striking resemblance to inactive CDK and/or SRC (101). 
 
m Still, in most mouse models, defects are seen in bone, brain, heart, and various epithelia—notably in the 
skin, hair, lungs, and eyes. Indeed, EGF was originally identified as a protein that induces early eyelid opening 
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and teeth eruption in mice (104). 
 
n This is the classical view accepted by the field. However, emerging evidence suggests that EGFR may be 
forming higher order multimers (109). 
 
o Extracellular domains I and III alternatively are referred to as LR1 and LR2—the LR being short for leucine-
rich (115). 
 
p In other words, the EGFR TKD primarily catalyzes trans-autophosphorylation (118). As such, throughout this 
work, the measurement of EGFR’s phosphotyrosines is used as a readout of EGFR activity. 
 
q The DFG residues relative orientation (compared to the a-loop) does change; they simply remain in the 
catalytic site in both the in/active confirmations. 
 
r For this reason, it was thought that EGFR was always in the active conformation and that dimerization of the 
receptor simply enabled trans-phosphorylation of the C-terms of two receptors (101). 
 
s Although exposure of the dimerization arm is an important part of the HER family activation mechanism, it is 
not sufficient. Mutations that disrupt the domain II–IV inhibitory tether do not activate EGFR (135,136). 
Moreover, deleting domain IV (and thus constitutively exposing the dimerization arm) does not cause ligand-
independent dimerization of EGFR (137). 
 
t Most of the binding energy between EGF and EGFR is mediated by domain III (139), which is also the binding 
cite for cetuximab, the anti-EGFR therapeutic antibody (140). While cetuximab mainly inhibits EGFR signaling 
by preventing ligand binding and receptor-mediated dimerization, there is also a role for the antibody in 
attenuating signal by causing internalization/downregulation of the receptor and immune-mediated effects 
(141,142). 
 
u These interactions were postulated to exist long before the crystal structure of EGFR was solved (144). 
  
v This is not to mention the myriad cellular processes involved in modifying EGFR signaling in the cell including 
receptor internalization (149), miRNA modulation of enzyme levels (150), and/or cross talk with other receptor 
types (151). Beyond phosphorylation, glycosylation, and ubiquitylation, unique post-translational modifications 
also effect EGFR’s activity, with sulfenylation (152) and palmitoylation (153) being but two examples. This is to 
say: EGFR activity is regulated in a multitude of ways beyond autophosphorylation. 
 
w By extension, this increases receptor activity by removing inhibitory proximal C-term interactions (161) and 
providing additional sites for adaptor binding. 
 
x Alternatively, phosphatidylinositol-4,5-bisphosphate (PI4,5-P2), phosphatidylinositol-3,4, 5-triphosphate 
(PI3,4,5-P3). 
  
y Robust readouts of MAPK and/or PI3K/AKT activation are used as a readout of EGFR downstream signaling 
throughout this work. 
 
z EGFR is mutated in ≤ 2 % of these cancers, and few of these mutations are recurrent (179). 
 
aa Besides erlotinib and gefitinib, most other FDA-approved reversible TKIs bind to the inactive confirmation of 
their targets (182,213). 


