Gene-Environment Interactions Between Manganese Toxicity and Early-Onset Parkinson's Disease Genes

By

Sudipta Chakraborty

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Neuroscience

May, 2015

Nashville, Tennessee

Approved:

Aaron Bowman, Ph.D.

Keith Erikson, Ph.D.

Bill Valentine, Ph.D.

Michael Aschner, Ph.D.
To my family, for their sacrifices and unconditional love,

and in loving memory of Dadu.

I hope I’ve made you all proud.
ACKNOWLEDGEMENTS

The work presented in this thesis would not have been possible without the support of many mentors and colleagues. I would first like to thank Miki Aschner, my mentor, for taking me under his wing and guiding me through this journey. I will be eternally grateful for Miki’s role in fostering scientific freedom and critical thinking that have allowed me to develop into a strong, independent scientist. I am honored to consider Miki as a life-long mentor, colleague and friend.

I would also like to thank the other members of my thesis committee, Aaron Bowman, Keith Erikson and my chair, Bill Valentine, for their thought-provoking discussions, constructive feedback, and relentless support that have always challenged me to improve both my approach to scientific problems and my presentation skills.

I am also indebted to the Neuroscience Graduate Program through the Vanderbilt Brain Institute (VBI) for the valuable knowledge I gained during my earlier years. The classroom instruction, delivered by many talented scientists and aimed to develop molecular knowledge and enhance presentation skills, has been fundamental in my growth as a neuroscientist. I would also like to thank my funding support from Vanderbilt’s Center in Molecular Toxicology, as well as the National Institute of Environmental Health Sciences. The research presented in this thesis would not have been possible without their financial support. I also appreciate the administrative assistance from the VBI’s Mary Michael-Woolman, Roz Johnson, Shirin Pulous and Beth Sims and Molecular Toxicology’s Alycia Buford, Wil Comstock and Kakie Mashburn for both academic and extracurricular needs. Their hard work and dedication is well treasured.

My success has also been largely influenced by several colleagues in the Aschner lab. I am forever grateful to Daiana Avila, who first taught me the ways of the worms. I would also like to thank former graduate students Kirsten Helmcke, Jenny Madison, Anna Griffin, Priscila Gubert and former postdoc Ebany Martinez-Finely, for their support, friendship and guidance. A big thanks goes out to Julia Bornhorst – I will forever remember our extremely productive, powerful and fun collaboration with fond memories. The Aschner group faced the difficult obstacle of transitioning from Vanderbilt University to Albert Einstein College of Medicine in 2013. Several colleagues made this transition with me, and I will be forever grateful for our camaraderie and support of each other during this challenging time. Special thanks go to the postdocs Pan Chen, Sam Caito and Cari Lopez-Granero for their technical and professional guidance and valued friendship from Vanderbilt to Einstein. I also cannot be grateful enough for the beautiful friendships and support from my colleagues Thuy Nguyen, Marion Park and Megan.
Culbreth. Thank you, girls, for keeping me (somewhat) sane during such a difficult phase in my life. Our memories in both Music City and the Big Apple, both professionally and personally, will be forever cherished. Thank you also to my new Einstein friends, Meagan & Ryan Vogt – your friendship and support means more to me than you know.

Graduate school is both an enlightening and trying process. I could not have survived it without the support of many wonderful friends in Nashville, including (in no particular order): Hayley & Hank Clay, Emily & AJ Baucum, Elizabeth Conrad, Christi & Will French, Sarah & Scott Collier, Andrew & Abby Hardaway, Elizabeth Meredith, Brad Kraemer, Alexia Melo Carrillo, Terry Jo Bichell, Teniel Ramikie, Gloria Laryea, Martin Schmidt, Erin Watt, Rachel Game, Juli Fister, Cait Gordon, Jamie & James Saxon and Bobby Madamanchi, among many others. A special thanks goes to Gunnar Kwakye, my “grad school life coach” and dear friend who helped shape my professional and personal approaches to the highs and lows of grad school. It has been such a comfort and joy to learn from, commiserate with, and celebrate with you all.

Thank you to my wonderful family. To my mother and father who have sacrificed so much for my brother and I, and have always encouraged me to exceed expectations and reach for the highest dreams – thank you for your unconditional support and love, Mommy and Daddy. I hope I have made you proud through this long process. To my brother, whose humor, distractions and interesting perspectives have helped me cope with the challenges along the way – thank you, Ricky. To my aunt and uncle, who have always been like second parents to me – thank you both for believing in me and loving me over the years. I would also like to thank my new Henriquez/Ziccolella family members. I feel so honored to have joined such a warm and incredible family, and sincerely appreciate your support of me during this time. Lastly, I would like to thank Dadu, who I wish could have seen me reach this milestone. Dadu was an inspiration to me in pursuing higher education, and was always supportive of my academic goals. I miss you, Dadu, and I hope I’ve made you proud.

Last, but certainly not least, I’d like to thank my amazing best friend/soul mate/husband. I am eternally grateful to have found you here in Nashville, Chrissy. Your unwavering support, kindness, encouragement and love have made this entire thesis possible. Thank you so much for inspiring me to be the very best I can be. I’ve truly learned from the best, and look forward to many, many more years of scientific and life discoveries with the one I love.
LIST OF FIGURES

Figure
1. Schematic illustrating the basal ganglia circuitry involved in both direct and indirect pathways...3

2. The mammalian Mn transport system ...20

3. C. elegans dopaminergic head neurons...32

4. pdr-1 mutants are hypersensitive to an acute Mn exposure53

5. Enhanced Mn accumulation in pdr-1 and djr-1.1 mutants is reversed by WT α-Syn expression ...55

6. Mn-induced oxidative stress is exacerbated in pdr-1 and djr-1.1 mutants, but rescued by α-Syn expression ...57

7. Increased skn-1 mRNA expression in djr-1.1 and pink-1 mutants59

8. DAergic neurodegeneration in WT and pdr-1 mutants is attenuated by α-Syn expression ...61

9. Increased α-Syn expression in djr-1.1 deletion mutants ..63

10. pdr-1 mutants show alterations in mRNA expression of Mn exporter, but not importer, genes ...83

11. Overexpression of fpn-1.1 in pdr-1 mutants rescues Mn-induced lethality85

12. Overexpression of fpn-1.1 in pdr-1 mutants decreases levels of highly
pro-oxidant metals .. 87

13. Overexpression of *fpn-1.1* in *pdr-1* mutants improves mitochondrial integrity and antioxidant response ... 89

14. Overexpression of *fpn-1.1* in *pdr-1* mutants improves the DA-dependent basal slowing response ... 91

15. Basic model summarizing the findings of Chapter III .. 92
LIST OF SUPPLEMENTARY TABLES AND FIGURES

Supplementary Table

1. Conditions for ICP-MS/MS (Agilent 8800 ICP-QQQ). .. 111

2. Conditions for ICP-MS (ICAP Qc, Thermo Fisher Scientific) 111

3. Conditions for LA (LSX213G2+, CETAC Technologies) ... 111

Supplementary Figure

1. Decreased basal respiration in \textit{pdr-1} mutants that is not rescued by \textit{fpn-1.1} overexpression ... 112
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-MT</td>
<td>3-methoxytyramine</td>
</tr>
<tr>
<td>6-OHDA</td>
<td>6-hydroxydopamine</td>
</tr>
<tr>
<td>α-Syn</td>
<td>alpha-synuclein</td>
</tr>
<tr>
<td>AADC</td>
<td>aromatic acid decarboxylase</td>
</tr>
<tr>
<td>AC</td>
<td>adenyate cyclase</td>
</tr>
<tr>
<td>ADE</td>
<td>anterior deirid</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>BBB</td>
<td>blood brain barrier</td>
</tr>
<tr>
<td>BCA</td>
<td>bicinchoninic acid</td>
</tr>
<tr>
<td>BSR</td>
<td>basal slowing response</td>
</tr>
<tr>
<td>C. elegans</td>
<td>Caenorhabditis elegans</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CEP</td>
<td>cephalic</td>
</tr>
<tr>
<td>CGC</td>
<td>Caenorhabditis Genetics Center</td>
</tr>
<tr>
<td>Cl</td>
<td>chloride</td>
</tr>
<tr>
<td>Co</td>
<td>cobalt</td>
</tr>
<tr>
<td>COMT</td>
<td>catechol-O-methyltransferase</td>
</tr>
<tr>
<td>CTS</td>
<td>consensus transport sequence</td>
</tr>
<tr>
<td>Cu</td>
<td>copper</td>
</tr>
<tr>
<td>DA/DAergic</td>
<td>dopamine/dopaminergic</td>
</tr>
<tr>
<td>DAT</td>
<td>dopamine transporter</td>
</tr>
<tr>
<td>DCF-DA</td>
<td>2',7'-dichlorodihydrofluorescein diacetate</td>
</tr>
<tr>
<td>DCT1</td>
<td>divalent cation transporter 1</td>
</tr>
<tr>
<td>DMT1</td>
<td>divalent metal transporter 1</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>EPR</td>
<td>electron paramagnetic resonance</td>
</tr>
<tr>
<td>ETC</td>
<td>electron transport chain</td>
</tr>
<tr>
<td>Fe</td>
<td>iron</td>
</tr>
</tbody>
</table>
FPN... ferroportin
GABA/GABAergic.................................. gamma-aminobutyric acid/ergic
GFAAS ... graphite furnace atomic absorption spectroscopy
GFP... green fluorescent protein
GKC.. Gene Knockout Consortium
GPe .. globus pallidus, external segment
GPi .. globus pallidus, internal segment
GSH.. glutathione
GSSG .. glutathione disulfide
H₂O₂ .. hydrogen peroxide
HIF ... hypoxia inducible factor
ICP-MS .. inductively coupled plasma mass spectrometry
IPD ... idiopathic Parkinson’s disease
IRE ... iron responsive element
KO ... knockout
L-DOPA .. L-3,4-dihydroxyphenylalanine
L1 ... 1st larval stage
LPS .. lipopolysaccharide
MAO .. monamine oxidase
MCT .. monocarboxylate transporter
MeHg .. methylmercury
Mfn2 .. mitofusin 2
MMT .. methylcyclopentadienyl manganese tricarbonyl
Mn/MnCl₂ .. manganese/manganese chloride
MPTP .. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
MRI .. magnetic resonance imaging
mRNA .. messenger ribonucleic acid
MSN .. medium spiny neuron
mtDNA .. mitochondrial deoxyribonucleic acid
MTS .. mitochondrial targeting sequence
Na/NaCl .. sodium/sodium chloride
Ni ... nickel
NLS .. nuclear localization signal/sequence
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nrf2</td>
<td>Nuclear factor (erythroid-derived)-like 2</td>
</tr>
<tr>
<td>OVR</td>
<td>overexpressing</td>
</tr>
<tr>
<td>PAS</td>
<td>para-aminosalicylic acid</td>
</tr>
<tr>
<td>PC</td>
<td>pyruvate carboxylase</td>
</tr>
<tr>
<td>PD</td>
<td>Parkinson’s disease</td>
</tr>
<tr>
<td>PDE</td>
<td>posterior deirid</td>
</tr>
<tr>
<td>pdr-1</td>
<td>Parkinson’s disease-related 1</td>
</tr>
<tr>
<td>PINK1</td>
<td>PTEN-induced putative kinase 1</td>
</tr>
<tr>
<td>PPM</td>
<td>serine/threonine protein phosphatase</td>
</tr>
<tr>
<td>RNAi</td>
<td>ribonucleic acid interference</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>SNpc</td>
<td>substantia nigra pars compacta</td>
</tr>
<tr>
<td>SNpr</td>
<td>substantia nigra pars reticulata</td>
</tr>
<tr>
<td>SO</td>
<td>superoxide</td>
</tr>
<tr>
<td>SPCA</td>
<td>secretory pathway Ca(^{2+}/Mn^{2+}) ATPase</td>
</tr>
<tr>
<td>STN</td>
<td>subthalamic nucleus</td>
</tr>
<tr>
<td>Tf/TfR</td>
<td>transferrin/transferrin receptor</td>
</tr>
<tr>
<td>TH</td>
<td>tyrosine hydroxylase</td>
</tr>
<tr>
<td>TPN</td>
<td>total parenteral nutrition</td>
</tr>
<tr>
<td>UPS</td>
<td>ubiquitin proteasome system</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>VBM</td>
<td>voxel-based morphometry</td>
</tr>
<tr>
<td>VDAC</td>
<td>voltage-dependent anion channel</td>
</tr>
<tr>
<td>VMAT2</td>
<td>vesicular monoamine transporter 2</td>
</tr>
<tr>
<td>WT</td>
<td>wildtype</td>
</tr>
<tr>
<td>Zn</td>
<td>zinc</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

DEDICATION .. ii
ACKNOWLEDGEMENTS ... iii
LIST OF FIGURES .. v
LIST OF SUPPLEMENTARY TABLES AND FIGURES .. vii
LIST OF ABBREVIATIONS .. viii

Chapter

I. INTRODUCTION TO GENE-ENVIRONMENT INTERACTIONS: PARKINSON’S DISEASE AND MANGANESE TOXICITY .. 1
 Parkinson’s Disease ... 1
 Introduction ... 1
 The Dopaminergic System ... 1
 PD Pathophysiology: Molecular Mechanisms ... 5
 PD Models ... 8
 Pharmacological Models ... 8
 MPTP ... 8
 6-OHDA .. 9
 Pesticides ... 10
 LPS .. 10
 Genetic Animal Models .. 11
 Parkin ... 11
 PINK1 ... 12
 DJ-1 .. 13
 α-Syn ... 14
 Manganese ... 15
 Routes of Exposure ... 15
 Intestinal Uptake and Release ... 16
 Transport Across the Cell Membrane ... 18
 Buffering and Other Regulatory Mechanisms .. 21
 Manganese Efflux ... 24
 Manganese Toxicity ... 25
 Manganeseism & PD ... 26
 Shared Molecular Mechanisms .. 29
 Caenorhabditis elegans as a Neurotoxicity Model ... 31
 PD Genetics Homology in *C. elegans* .. 35
 parkin/pdr-1 .. 35
 pink1/pink-1 ... 36
 dj1/djr-1.1 & djr-1.2 ... 36
 Manganese Transporter Homology in *C. elegans* ... 37
 Uptake via DMT1/SMF1-3 .. 37
Overview of Specific Aims .. 40

II. THE EFFECTS OF PDR-1, PINK-1 AND DJR-1.1 LOSS IN MANGANESE -INDUCED TOXICITY AND THE ROLE OF α-SYN IN C. ELEGANS ... 42
 Introduction .. 42
 Materials & Methods ... 46
 Results .. 52
 Discussion .. 62
 Conclusions .. 73

III. LOSS OF PDR-1/PARKIN INFLUENCES MANGANESE HOMEOSTASIS THROUGH ALTERED FERROPORTIN EXPRESSION IN C. ELEGANS ... 74
 Introduction .. 74
 Materials & Methods ... 77
 Results .. 82
 Discussion .. 90
 Conclusions .. 98

IV. DISCUSSION AND FUTURE DIRECTIONS ... 99

Supplementary Tables and Figures ... 111

References ... 113
CHAPTER I

INTRODUCTION TO GENE-ENVIRONMENT INTERACTIONS: PARKINSON’S DISEASE AND MANGANESE TOXICITY

Parkinson’s Disease

Introduction

Parkinson’s Disease (PD) is one of the most common neurodegenerative disorders in the U.S. population, with a median age of onset around 60 years\(^1\). This disease affects more than 1% of the population over the age of 60 by causing preferential damage to the nigrostriatal circuit of the brain. More specifically, distinct degeneration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc) is the prominent pathological hallmark of the disease, along with the presence of α-synuclein-rich Lewy body inclusions. These features ultimately lead to motor dysfunction, with cardinal symptoms including bradykinesia (slowness in movement), tremors, rigidity, and postural instability\(^2\). Cognitive deficits and emotional and behavioral problems are also seen in diseased individuals. Later stages of the disease are often marked by appearance of a masked face, along with a forward-flexed posture, gait freezing, shuffling steps, and gastrointestinal issues\(^1\).

The Dopaminergic System

While the selectivity in PD-associated cell death remains poorly understood, it is advantageous to understand how the DAergic system operates in cells. The neurotransmitter dopamine (3,4-dihydroxyphenethylamine, DA) is synthesized in a two-
step process, starting with hydroxylation of the amino acid tyrosine via the rate-limiting enzyme tyrosine hydroxylase (TH) to produce L-DOPA (L-dihydroxyphenylalanine)3. DA is then produced from L-DOPA via decarboxylation by AADC (aromatic acid decarboxylase)4. Upon synthesis, DA is packaged into synaptic vesicles by the vesicular monoamine transporter 2 (VMAT2) for release into the synaptic cleft5. DA itself can be metabolized by monoamine oxidase (MAO) into the metabolite DOPAC (3,4-dihydroxyphenylacetic acid), or by catechol-O-methyl transferase (COMT) into 3-MT (3-methoxytyramine)6,7. In addition to metabolism, free dopamine is typically cleared from the synaptic cleft by the dopamine transporter (DAT), localized to axon terminals, that helps recycle the neurotransmitter for future storage and release. This 12-transmembrane domain transporter is a symporter, with dopamine reuptake coupled to the co-transport of two Na+ ions and one Cl− ion8,9.

There are four major DAergic neural circuits in the brain: the tuberoinfundibular10, mesocortical11, mesolimbic12 and nigrostriatal pathways13, with the last circuit implicated in PD. The DAergic neurons of the nigrostriatal pathway send their projections from the SNpc to the striatum, which in primates, consists of the caudate nucleus and putamen14. This circuit is a vital component of the basal ganglia region implicated in PD, which is comprised of the SN, striatum, globus pallidus and subthalamic nucleus (STN), and interacts with the motor cortex and thalamus. The ultimate functional output of the striatum involves the coordination of movement15. This system uses two antagonistic circuits to maintain balance: the direct and indirect pathways16 (Fig 1). The direct pathway starts with excitatory, glutamatergic input from the motor cortex to stimulate the striatum, which is mostly composed of inhibitory, GABAergic medium spiny neurons
Figure 1. Schematic illustrating the basal ganglia circuitry involved in both direct and indirect pathways. DA: dopamine; Glu: glutamate; GPe: globus pallidus external segment; GPi: globus pallidus internal segment; SNpc: substantia nigra pars compacta; SNpr: substantia nigra pars reticulate; STN: subthalamic nucleus.
(MSNs), resulting in inhibition of the inhibitory cells of the globus pallidus internal segment (GPI) and the substantia nigra pars reticulate (SNpr). This disinhibition results in increased stimulation of the excitatory neurons of the thalamus, resulting in increased excitation of the motor cortex to produce a hyperkinetic response17. Meanwhile, the indirect pathway starts with similar input from the motor cortex to stimulate the striatum, which then inhibits the inhibitory cells of the globus pallidus external segment (GPe) and SNpr from inhibiting the excitatory cells of the STN. This results in stimulation of the GPI/SNpr, resulting in inhibition of the thalamus to decrease stimulation of the motor cortex to produce a hypokinetic response. Additionally, the SNpc modulates this antagonistic circuitry through DAergic stimulation of the striatum17.

The intricacies of this pathway revolve around DA’s modulatory effects on its receptors. There are 5 different DA receptors subdivided into two families: D1-like (D1 and D5) and D2-like (D2, D3 and D4) receptors. These receptors are G-protein coupled receptors (GPCRs) that differ in their downstream targets and biochemical properties18. D1-like receptors are coupled to Gα-Syn proteins and activate the enzyme adenylate cyclase (AC) to stimulate cyclic AMP (cAMP) production for a net excitatory effect; D2-like receptors are coupled to Gαi/o proteins and inhibit AC to prevent cAMP production for a net inhibitory effect19,20 (\textbf{Fig 1}). Interestingly, D2 and D3 receptors offer a further level of DA regulation, as they can also be found as presynaptic autoreceptors that participate in a negative feedback loop to sense extracellular dopamine and help inhibit further synthesis or release21. In relationship to the basal ganglia circuitry, D1-like receptors are expressed by MSNs of the direct pathway, while D2-like receptors are expressed by MSNs of the indirect pathway22. Dopamine stimulates D1-like receptors at
the striatum to increase thalamic excitation of the cortex via the direct pathway, while it inhibits the striatum through D2-like receptors via the indirect pathway to decrease inhibition of thalamic excitation of the cortex (Fig 1). Thus, in the case of PD, the loss of DAergic input to the striatum affects both pathways to decrease thalamic excitation of the motor cortex, resulting in the characteristic hypokinetic responses of the disease.

PD Pathophysiology: Molecular Mechanisms

Upon understanding the role of the SNpc in the neural movement circuitry, it is apparent that the loss of DAergic innervation to the striatum would result in the opposite outcome of the direct pathway to produce the characteristic hypokinetic response seen in PD. However, the molecular mechanisms behind PD pathophysiology are still not fully understood. Currently known cellular processes that may be behind the neurodegeneration include aberrant protein folding and aggregation; mitochondrial dysfunction and increased oxidative stress; and proteasomal impairments\(^{23} \). In terms of PD-associated protein aggregation, the best example is the role of the protein alpha-synuclein (\(\alpha \)-Syn). Aggregation of this protein into cellular inclusions known as Lewy bodies is considered to be a pathological hallmark of PD\(^{24} \). Yet, the physiological role of \(\alpha \)-Syn is still not fully understood. Studies have linked \(\alpha \)-Syn to presynaptic vesicle formation and recycling, as well as decreased vesicular DA release that may be related to its ability to bind phospholipids and vesicular fusion machinery\(^{25-27} \). \(\alpha \)-Syn aggregation has also been shown to affect TH and AADC activity, implicating impaired dopamine biosynthesis as a potential mechanism behind its toxicity\(^{28,29} \). Additionally, \(\alpha \)-Syn has been shown to interact with and modulate DAT, though it remains unclear
whether this results in enhanced DA reuptake via increasing DAT clustering30, or through an attenuation of its activity31.

Mitochondrial dysfunction and oxidative stress also play a major role in PD pathophysiology. Several studies have implicated impaired Complex I activity in the electron transport chain (ETC) and impaired mitochondrial protease activity in PD patients32, 33. Moreover, downregulation of genes encoding vital mitochondrial proteins have been evident in DAergic neurons from patients suffering with PD34. Changes in mitochondrial organization have also been associated with PD. The importance of mitochondrial integrity has specifically come under investigation, as two PD-associated proteins, PINK1 and Parkin, have recently been identified as key modulators of mitophagy, and will also be discussed later in this section. This process involves the degradation of damaged mitochondria that require mitochondrial PINK1 to recruit cytoplasmic Parkin, an E3 ubiquitin ligase, to facilitate the turnover35. Moreover, these proteins also interact with mitochondrial fusion and fission factors, such as mitofusin 2 (Mfn2) and Drp1, to maintain a proper balance in mitochondrial network integrity36, 37. Thus, in the absence of either of these proteins in their functional form, aggregation of damaged mitochondria, and/or an imbalance between mitochondrial fusion and fission, can result in cell death.

Outside of direct mitochondrial deficits in PD, overall oxidative stress is also evident. Oxidative stress can be viewed as an imbalance between the production of reactive oxygen and nitrogen species (RONS) and the cellular antioxidant defense mechanisms against RONS. A key factor in tilting the balance towards enhanced RONS levels is dopamine itself, a strong auto-oxidant that can produce damaging quinones
and free radicals to promote cell death38. Toxins, metals and oxygen itself can further catalyze the formation of these reactive intermediates, as redox-active metals can enhance the natural redox cycling of quinones to further generate excess free radicals. DA quinones can promote cellular damage by conjugating with cysteine residues of proteins, resulting in alterations in protein function, such as that seen with tyrosine hydroxylase and α-Syn39, 40. Quinone formation has also been associated with decreased mitochondrial function41. Antioxidants like glutathione (GSH) can counteract these damaging effects by acting as a quinone quencher42. GSH is a tripeptide composed of glutamate, glycine and cysteine, with the reactive thiol group in the cysteine residue acting as the RONS scavenger43. A decreased ratio of reduced forms vs. oxidized forms (GSH/GSSG) is often used as a measure of increased oxidative stress, with decreased levels of reduced GSH found in the SN of PD brains44. As this system also depends on a physiological balance, both GSH depletion and GSH overproduction can result in DAergic cell death, with the latter most likely representing a compensatory mechanism to protect against further cell death.

Connecting these pathophysiological perturbations in PD are impairments in proteasomal or autophagic function, resulting in protein or organellar accumulation, respectively. The ubiquitin proteasome system (UPS) is a key system in mediating the process of protein degradation45. This process begins with poly-ubiquitination of substrate proteins by ubiquitin-conjugating enzymes, followed by degradation of the tagged proteins in the 26S proteasome46. Proteasomal enzymatic activity has been shown to be impaired in the SN of idiopathic PD patients47. Furthermore, as age is a significant risk factor for neurodegenerative diseases like PD, it has also been shown...
that aging is associated with alterations in the proteasome system48. One of the enzymes involved in the UPS is Parkin, which also happens to be a major genetic risk factor for an early-onset, autosomal recessive form of PD. Interestingly, patients with \textit{parkin} mutations do not show the characteristic Lewy body pathology49, suggesting that Parkin may play a role in their formation. Parkin has been shown to ubiquitinate a glycosylated form of \(\alpha\)-Syn50 that may also involve targeting the protein synphilin-1, an \(\alpha\)-Syn-interacting protein51. As aforementioned, in addition to protein degradation, Parkin also mediates organelle turnover by participating in mitophagy. Thus, the loss of \textit{parkin} can be majorly detrimental to the cell, as both abnormal protein and mitochondrial buildup can result in cell death.

\textbf{PD Models}

Currently, several types of models exist to understand how the mechanisms behind PD may result in DAergic cell death. Both pharmacological and genetic tools have been used to explore the disease, with attempts to recapitulate the major features of the disease, including DAergic cell death and/or motor deficits.

\textit{Pharmacological Models}

\textbf{MPTP:} 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its metabolite MPP+ (1-methyl-4-phenylpyridinium ion) are well-known neurotoxins used to model PD. The discovery of MPTP as a PD model arose accidentally, as illicit Californian drug users in the 1980s were diagnosed with Parkinsonism after using a contaminated batch of MPPP, a synthetic drug that mimics effects of morphine and meperidine. Researchers later identified MPTP in the drug as the culprit behind the Parkinsonism52. MPTP was
later confirmed to produce Parkinsonism in monkeys exposed to MPTP in addition to SN-selective cell death53. MPTP is converted into MPP+ by MAO-B and then taken up by DAT into DAergic neurons, where it inhibits mitochondrial Complex I activity. MPTP administration in primates results in Parkinsonism that responds to L-DOPA and shows all cardinal motor symptoms of PD. Similar results have been achieved in studies using mice. However, MPTP-induced lesions of the SNpc do not present with the formation of Lewy bodies.

6-OHDA: This model utilizes 6-hydroxydopamine (6-OHDA), or oxidopamine, to result in degeneration of the nigrostriatal pathway, and represents the first-ever pharmacological PD model54. Administration of this DA analog must be done locally through intracranial injections, as 6-OHDA does not pass the blood brain barrier (BBB) and can unselectively affect all catecholaminergic neurons55. Once in the brain, 6-OHDA acts as a hydroxylated DA analog and is taken up into DAergic neurons via DAT56. 6-OHDA is of particular interest in PD due to its endogenous nature as a toxic DA metabolite that is produced from a non-enzymatic reaction between DA, hydrogen peroxide and free iron at physiological concentrations57. Moreover, \textit{in vivo} production of 6-OHDA is more likely to occur in the highly oxidizing environment of DA neurons, as 6-OHDA auto-oxidation increases production of hydrogen peroxide and free radicals, including the superoxide ion and hydroxyl radical58. These RONS are most likely generated through 6-OHDA metabolism or direct inhibition of complex I and IV of the mitochondrial ETC59, 60, and result in PD-associated molecular signatures, including increased lipid peroxidation, protein denaturation and increased GSH58.
Pesticides: Exposure to pesticides has long been associated as environmental risk factors for the development of PD. One such pesticide is rotenone, a plant flavonoid that is used as a broad-spectrum pesticide. Rotenone is able to easily cross the BBB and does not require DAT to enter DAergic neurons\(^6\), where it inhibits complex I of the ETC\(^6\), resulting in the production of RONS. Unlike the other toxin models, rotenone exposure does exhibit α-Syn Lewy body inclusions, as well as degeneration of DAergic cells in the nigrostriatal pathway that results in PD-like motor deficits\(^6\). However, some doubts have been cast on the selectivity of rotenone-induced cell death towards nigrostriatal DAergic neurons\(^6\). Another pesticide used as a toxin model of PD is paraquat, a non-selective herbicide that shares structural similarities with MPTP\(^6\). While paraquat cannot cross the BBB, its precise uptake mechanism is unknown. Studies indicate that paraquat may enter the brain through a carrier-mediated mechanism like a neutral amino acid transporter similar to LAT-1\(^6\), followed by a DAT-independent, Na\(^+\)-dependent uptake mechanism to facilitate entry into DAergic neurons\(^6\). Once inside neurons, paraquat induces rampant oxidative stress by producing superoxide free radicals from undergoing redox cycling\(^6\), as well as promoting a pro-apoptotic cascade involving Bak and Bax, cytochrome c release and caspase-9 activation\(^7\). Similar to rotenone, paraquat exposure in rodents does result in α-Syn aggregation in the SNpc, as well as loss of nigrostriatal DAergic neurons and motor impairments\(^6,7\).

LPS: Neuroinflammation has recently come to light as a component of PD pathogenesis. Accordingly, local administration of the bacterial endotoxin lipopolysaccharide (LPS) into the nigrostriatal tract results in DAergic neurodegeneration\(^7\). This model relies on LPS-
induced activation of glia that subsequently release soluble factors, such as cytokines, RONS, and lipid metabolites that induce nigral cell death and motor deficits in animals73.

\textit{Genetic Animal Models}

Although the majority of PD cases are sporadic in nature, about 10-20\% of PD has documented genetic causes. Many PD-associated genes have been identified, including \textit{dj-1}, \textit{pink1}, \textit{parkin}, \textit{nurr1}, \textit{lrrk2}, \textit{uch-l1}, and \textit{SNCA}2. In light of the work presented in this thesis, the current chapter will specifically focus on the three autosomal recessive genes responsible for early-onset PD, \textit{parkin}, \textit{pink1} and \textit{dj1}, and the autosomal dominant gene for \textit{α}-Syn, \textit{SNCA}.

\textbf{Parkin:} \textit{PARK2/parkin} encodes for a protein that consists of 465 amino acids, and contains a ubiquitin-like domain that is responsible for substrate recognition, along with RING finger domains that interact with other components of the UPS74. Parkin expression in the brain is distributed within basal ganglia structures, including the SN and caudate-putamen, but with some expression in the cerebellum as well75. Beside itself, Parkin has many substrates, including the synaptic vesicle-associated protein CDCrel-149, \textit{α}-Syn50, synphilin-151, and the membrane receptor Pael-R76. Parkin has also recently been shown to form an E3 ligase multi-protein complex with DJ-1 and PINK1, two other proteins implicated in PD77. Homozygous mutations found in \textit{parkin} have been linked to an early-onset familial form of PD, with no presence of Lewy bodies74. \textit{Parkin} mutants show altered intracellular localization, along with altered substrate binding and enzymatic activity. Consequently, a functional effect of mutations in this gene is an inability to degrade substrate proteins78. \textit{Parkin -/-} mice show an
increase in extracellular striatal DA concentration79, while wildtype \textit{parkin} seems to increase cell surface expression of DAT for increased DA reuptake80. \textit{Parkin}-/- mice also show impairments in synaptic plasticity81, as \textit{parkin} seems to negatively regulate the strength and number of excitatory synapses82. However, while \textit{parkin} knockout mice do not show overt loss of DAergic neurons79, mice expressing a truncated version of Parkin show both DAergic degeneration as well as hypokinetic deficits83.

PINK1: Similar to \textit{parkin}, homozygous mutations in \textit{PARK6/pink1} also result in an early-onset form of PD84. Its protein product, PINK1 (PTEN-induced kinase 1) is a mitochondrial serine/threonine kinase with an N-terminal mitochondrial targeting sequence. PINK1 distribution appears to be uniform through the cortex, striatum, thalamus, brainstem and cerebellum85. Familial mutations result in defective kinase activity86 that is normally necessary for mitochondrial integrity, as its phosphorylation targets include mitochondrial fission and fusion factors87, as well as the mitochondrial serine protease HtrA288. Early effects of PINK1 loss in rats include decreased Complex I levels and increased ETC proton leak prior to the development of PD symptomatology89. Moreover, wildtype PINK1 has been shown to protect against mitochondrial toxin-induced DAergic cell death, as well as reducing apoptotic caspase levels and cytochrome c release from mitochondria90. Despite not showing loss of DAergic neurons, \textit{pink1} knockout mice show impaired DA release and age-dependent motor deficits that were accompanied by reduced striatal DA levels91, 92. As both \textit{parkin} and \textit{pink1} knockout models have not confidently shown selective DAergic neurodegeneration on their own, a fish model and mouse embryonic fibroblasts lacking both \textit{parkin} and \textit{pink1} shows both DAergic cell loss, locomotor dysfunction, and overt
mitochondrial deficits93. Such evidence brings to light the interconnected pathways between PINK1 and Parkin in PD, with Parkin able to rescue PINK1 loss94. Parkin is a PINK1 phosphorylation target, as PINK1’s kinase activity necessary to recruit Parkin to mitochondria with a lowered membrane potential35, 95, 96. Various modulators of this interaction have recently been introduced, including the Mtn2 and voltage-dependent anion channels (VDACs)36, 97. The teamwork between Parkin and PINK1 reveals the importance of maintaining proper mitochondrial trafficking and turnover, signifying an impaired clearance of defective mitochondria as a potential mechanism behind PD pathophysiology.

DJ-1: Moreover, mutations in *PARK7/dj-1* are also responsible for an autosomal recessive, early-onset form of PD98. Originally identified as an oncogene, this gene encodes for DJ-1, a redox-sensitive chaperone protein that translocates from the cytoplasm to mitochondria following oxidation of a cysteine residue99. DJ-1 shows both peroxiredoxin-like peroxidase and glyoxylase activity100, 101. Mutations in *dj-1* result in increased RONS levels and impaired mitochondrial energetics102, while overexpression of WT DJ-1 protects against DA toxicity and cell loss103. However, similar to *parkin* and *pink1* knockout mice, DJ-11/- mice do not show overt DAergic neurodegeneration in the SN, but do show alterations in DA reuptake and mitochondrial dysfunction104, 105. DJ-1 may also protect cells through stabilization of the antioxidant transcription factor Nrf2 by blocking its interaction with its inhibitor protein Keap106. Interestingly, DJ-1 has also been shown to form a multi-protein complex with parkin and pink177, though this remains controversial. Moreover, DJ-1 up-regulation can rescue the loss of PINK1-mediated sensitization of DAergic neurons in the SNpc to a mitochondrial toxin94. The
rescue of *pink1* loss-mediated mitochondrial deficits by DJ-1 was also seen in *Drosophila*, but showed no rescue in *parkin* mutants\(^{107}\). These data reveal a role of DJ-1 acting in parallel with the parkin/pink1 pathway.

α-Syn: As previously mentioned, α-Syn plays a curious role in PD. SNCA encodes for this protein\(^ {108}\). As the physiological role of α-Syn remains unclear, it is still under debate whether the protein is neuroprotective or neurotoxic. This disparity may be related to the overall expression level of the WT form. Low or wildtype expression of the protein may be protective against oxidative insults\(^ {109}\), while high intracellular levels can promote abnormal and pathogenic aggregation of the protein\(^ {110}\). Toxicity could also arise from its genetic state, as PD-associated mutations (A53T, A30P and E46K) can result in increased aggregation of the protein\(^ {111,112}\). A53T transgenic mice show aggregation of α-Syn that led to progressive neurodegeneration and significant motor deficits in contrast to mice expressing WT α-Syn\(^ {113}\). Recent evidence has also suggested that the distinctive pathogenic mutations may result in unique fibril conformations, with A53T and E46K mutations exhibiting differences in secondary structures\(^ {111}\). A53T transgenic mice also exhibit mitochondrial DNA damage and degeneration in neocortical, brainstem and motor neurons\(^ {114}\). However, the severity of PD-associated phenotypes in their regional selectivity in α-Syn-mice may also be dependent on specific promoter-driven expression. Mice overexpressing a pan-neuronal promoter-driven α-Syn for broad neuronal expression show preferential mitochondrial dysfunction in nigrostriatal DAergic neurons significantly earlier before loss of striatal dopamine\(^ {115}\). Moreover, similar to the early-onset genetic models discussed above, transgenic α-Syn models have also struggled to recapitulate full DAergic neurodegeneration, despite showing
subtle changes in the nigrostriatal circuitry and/or damage to motor neurons and other neuronal circuits116. As with the potential interplay between the aforementioned autosomal recessive genes, interactions also exist with \(\alpha\)-Syn itself. In addition to the aforementioned putative role of Parkin-mediated \(\alpha\)-Syn regulation, DJ-1 has recently been found to protect against \(\alpha\)-Syn (A30P)-mediated toxicity in DAergic neurons117, with wildtype DJ-1 able to reduce \(\alpha\)-Syn dimerization118. As can be expected, the loss of both \textit{pink1} and overexpression of the A53T \(\alpha\)-Syn mutation in mice results in increased neurotoxicity compared to either the loss of \textit{pink1} or the expression of A53T alone119. Similarly, \textit{pink1} overexpression has also shown rescue of \(\alpha\)-Syn-induced locomotion and aging effects in \textit{Drosophila}120.

Manganese

\textit{Portions of this section have been published in the book chapter “Manganese” in Binding, Transport and Storage of Metal Ions in Biological Systems written by Chakraborty, Martinez-Finley, Caito, Chen and Aschner, as well as a review article in Toxicology Research written by Chen, Chakraborty, Peres, Bowman and Aschner.}

Routes of Exposure

Manganese (Mn) is an essential heavy metal that comprises nearly 0.1% of the earth’s crust. It is the 5th most abundant metal and 12th most abundant element overall, usually existing in its natural form in the environment as oxides, carbonates and silicates. As erosion produces a naturally ubiquitous presence of Mn in air, soil and waterways, the human population is readily exposed to Mn through a variety of environmental sources. However, the primary route of Mn exposure is through dietary
intake, as several Mn-containing foods are found in human diets. Legumes, rice, nuts and whole grains contain the highest Mn levels, while Mn is also found in leafy green vegetables, tea, chocolate, and fruits like blueberries and acai. Mn-containing nutritional supplements and vitamins are commonly taken on a daily basis, in addition to infant formulas that contain a trace element-enriched solution. The abundant Mn-containing dietary sources allow humans to obtain the proper Mn levels (2.3 mg/day for men and 1.8 mg/day for women) necessary for several important physiological processes, including development, digestion, reproduction, immune function, energy metabolism and antioxidant defenses.

Outside of dietary sources, exposure to inorganic forms of Mn can occur in several industrial settings, as Mn is used in the manufacturing of steel, batteries, fireworks, as well as ceramics, cosmetics, leather, glass and textiles. On the other hand, organic Mn is also highly prevalent in the environment, as Mn is a major component of the antiknock gasoline additive methylcyclopentadienyl Mn tricarbonyl (MMT), as well as fungicides and pesticides (e.g. Maneb and Mancozeb), smoke inhibitors, and as a medical magnetic resonance imaging (MRI) contrast reagent.

Intestinal Uptake and Release

Ingestion is the most common route for Mn exposure. The typical adult ingests <5 mg Mn/kg, coming mostly from grains, rice, nuts, tea, and chocolate. Around 3-5% of ingested Mn is absorbed in adult humans, with radiolabeled 54Mn uptake studies showing that for a meal containing 1 mg Mn, adult males absorb $1.35 \pm 0.51\%$ while adult females absorb $3.55 \pm 2.11\%$. Mammalian tissues typically contain 0.3-2.9
mg Mn/g wet tissue weight124. Turnover of ingested Mn is quick, with the mean retention of Mn 10 days after ingestion estimated at 5.0 ± 3.1% in women125. Mn levels are tightly controlled by absorption by the gastrointestinal (GI) tract and excretion by the liver. The majority of excreted Mn is in conjugation with bile in the liver and secreted into the intestines for elimination in the feces$^{122, 126}$. There is a small amount of Mn that is reabsorbed in the intestines from the bile, forming an enterohepatic circulation127. Small amounts of Mn can also be excreted by the pancreas or via urine122.

Molecular mechanisms of Mn uptake by intestinal cells are not well characterized. Early studies using rat brush border membrane vesicles found evidence of a lactoferrin receptor-mediated uptake of Mn128. Studies using the Caco-2 intestinal cell line derived from human colonic carcinoma revealed a biphasic uptake process, indicating that transport falls into its steady-state condition following a brief period of equilibration between intracellular and extracellular components129. Moreover, in vivo studies using rat intestinal perfusions have found that intestinal Mn uptake involves a high affinity, low capacity active transport process that is rapidly saturable130. It is thought that Mn can enter cells either through passive diffusion or active transport via the divalent metal transporter 1 (DMT1)$^{131, 132}$. DMT1 is a transporter that uses the cell membrane’s proton gradient to move several divalent metals across the cell membrane, including Mn, Fe, and Cu132, and will be discussed in more detail later in this chapter. Due to this shared transport mechanism, trace metals have been shown to influence the amount of Mn absorbed. Other dietary components that alter Mn absorption include phytates and ascorbic acid133.
Absorption of Mn by the GI tract is modulated by a variety of factors. The concentration of Mn in the diet influences both the absorption of Mn and its elimination in bile. When instances of high Mn intake occur, either through the diet or environmental exposure, the GI tract absorbs less Mn, the liver increases metabolism, and there is increased biliary and pancreatic excretion. Gender influences Mn uptake, with males absorbing significantly lower amounts of Mn than females. This may reflect men’s higher iron status and higher serum ferritin concentrations, which may compete with Mn for transport by DMT1. Age is another determinant of Mn absorption. Younger individuals, particularly infants, absorb and retain higher levels of Mn than adults, likely because their necessity for Mn is much higher than adults. Data concerning the intestinal absorption of Mn in infants compared to adults are limited, but studies have examined the detrimental effects of total parenteral nutrition (TPN) in severely ill or premature infants. These solutions are usually supplemented with a trace element solution that contains small amounts of Mn. However, unlike the minimal absorption of Mn from milk, the intravenous exposure to Mn-supplemented TPN solutions results in bypass of any intestinal control of absorption. Consequently, nearly 100% of Mn can be absorbed, resulting in conditions of toxicity in these vulnerable neonates. These infants also pass little stool, leading to even higher retention of Mn.

Transport Across the Cell Membrane

To date, Mn is a unique heavy metal in that it does not have its own group of cellular transport proteins. Rather, it “piggybacks” on transport systems known to regulate other heavy metals. Mn$^{3+}$ is mostly found complexed with the transferrin protein (Tf), which is then imported by the transferrin receptor (TfR). Following endocytosis of
this complex, Mn is released via endosomal acidification through a vacuolar ATPase (v-ATPase)139, at which point Mn3+ is converted to Mn2+. However, divalent Mn is more prevalent than trivalent Mn and can be transported via the divalent metal transporter 1 (DMT1)140. DMT1-mediated Mn import, the primary mode of Mn uptake, is also dependent on the proton gradient generated by a v-ATPase141. DMT1 can be found on endosomal membranes to transport converted Mn2+ into the cytoplasm, as well on the plasma membrane (Fig 2). DMT1 expression has been shown to co-localize with TfR142, indicating overlap between the two systems.

DMT1, originally known as DCT1 (Divalent Cation Transporter 1) or NRAMP2 (Natural Resistance Associated Macrophage Protein 2), transports a variety of divalent metals, including Mn2+, Fe2+, Cu2+, Zn2+, Co2+ and Cd2+. It was originally associated with iron transport, as a missense mutation in anemic Belgrade rats or microcytic mice was found to impair Fe uptake143,144; however, its affinity to Mn is similar to that of Fe145. It has 12 transmembrane domains, and metal transport is coupled to the co-transport of a proton. While having ubiquitous tissue expression, DMT1 shows highest localization in the intestine, kidneys and brain. Light and electron microscopy has also found DMT1 expression in glial cell bodies of the neocortex, subcortical white matter, and the hippocampus146, while immunocytochemistry has found dense DMT1 staining in the caudate, putamen, and SNpr of the monkey basal ganglia147. Rat pups exposed to Mn have increased levels of Mn \textit{in vivo}, as well as increased DMT1 protein expression throughout the brain148. Similarly, increased Mn uptake is seen upon impaired cellular iron status in astrocytic cultures, corresponding with enhanced DMT1 protein expression in these cultures149.
Figure 2. The mammalian Mn transport system. Various proteins involved in Mn transport into, within and out of the cell, including transport across the plasma membrane, as well as into the Golgi lumen and mitochondrial matrix.
While DMT1 is the primary mode of Mn uptake, other transporters also facilitate Mn uptake. For example, Mn can enter cells through the Zn transporters ZIP8 and ZIP14 that show high affinity for Mn\(^{2+}\) among other metals\(^{150, 151}\). These proteins are Mn\(^{2+}/\text{HCO}_3^-\) symporters that facilitate Mn uptake into the brain, liver and kidneys. Another example is the choline transporter; in situ rat brain perfusion techniques show inhibition of brain choline uptake by Mn\(^{2+}\) and/or Cd\(^{2+}\), but not Cu\(^{2+}\) or Al\(^{3+}\) ions\(^{152}\). Mn can also be taken up through voltage-gated and store-operated calcium channels, and ionotropic glutamate receptor Ca\(^{2+}\) channels. These studies used electron paramagnetic resonance (EPR), calcium-selective dyes (Fura2) and calcium competition/inhibition studies to show the permeability of Ca\(^{2+}\) channels by Mn\(^{2+}\) ions\(^{153-155}\). Studies have also found a citrate transporter that can facilitate entry of Mn\(^{156}\), and Mn-bound citrate may be a substrate for the organic anion transporter, the monocarboxylate transporter (MCT), or members of the organic anion transporter polypeptide or ATP-binding cassette families\(^{157}\). Despite the breadth of knowledge concerning non-DMT1 transport mechanisms, it is relatively unknown how much these secondary mechanisms contribute to overall Mn uptake (Fig 2).

Buffering and Other Regulatory Mechanisms

Upon entering the cytoplasm, further mechanisms exist to help buffer intracellular Mn concentrations. Mn shows preferential accumulation in the mitochondria and is taken up by the mitochondrial calcium uniporter\(^{158, 159}\). This uniporter contains an external activation site that can bind Ca\(^{2+}\) to enhance uptake of both Ca\(^{2+}\) and Mn\(^{2+}\) through a specific transport site. Meanwhile, Mn efflux out of the mitochondria occurs through a very slow process that is Na\(^{2+}\)-independent\(^{159}\). Moreover, the Golgi complex
also helps to sequester intracellular Mn through the secretory pathway Ca\(^{2+}\)/Mn\(^{2+}\)-ATPases (SPCAs). These pumps can bring in Mn\(^{2+}\) into the Golgi lumen (Fig 2), and show high expression in the brain\(^{160}\). Mutations in the SPCA1 gene (atp2c1) result in Hailey-Hailey Disease, an adult-onset skin condition that is characterized by frequent blistering and erosions\(^{161}\). High Mn\(^{2+}\) concentrations can inhibit ATPase activity of the pump, resulting in breakdown of Golgi organization in neurons that can be partially reversed by Mn chelation via EDTA (ethylenediaminetetraacetic acid)\(^{162}\). This indicates that SPCAs are effectively able to pump Mn\(^{2+}\) into the Golgi complex at lower concentrations, whereas higher concentrations result in inhibition and breakdown.

Additional homeostatic processes can include binding to Mn-dependent metalloenzymes or proteins. As Mn is a vital cofactor for many enzymes, proper metalloregulation is key in promoting optimal intracellular Mn levels, with some of this regulation occurring in a cell type-specific manner. Within the brain, astroglia are thought to be a significant sink for Mn accumulation. This is primarily due to the localization of glutamine synthetase (GS) within astroglia, an enzyme necessary for the glutamate-glutamine shuffle. Nearly 80% of brain Mn is found associated with GS, as Mn is a necessary cofactor for GS activity\(^{163}\). Consequently, the abundance and selectivity of Mn accumulation in these cells can result in astroglia being the initial targets of toxicity. Similar to GS, there are several other enzymes that require Mn for proper enzymatic function. These include Mn-SOD or SOD2, the aforementioned antioxidant mitochondrial protein that converts superoxide into hydrogen peroxide and \(O_2\). Another Mn-containing mitochondrial protein is pyruvate carboxylase (PC), which catalyzes the carboxylation of pyruvate to oxaloacetate and serves as a bridge between
carbohydrate and lipid metabolism164. PC can depend on a magnesium ion instead of one Mn ion as a cofactor for proper functioning165. Yet another Mn-containing metalloenzyme is arginase (ARG1 and ARG2). This enzyme plays a vital role in the urea cycle, and requires two Mn ions in order to convert arginine into urea and ornithine166. Finally, certain serine/threonine protein phosphatases (PPMs) are also metal-dependent (PP2C), requiring two Mg2+ or Mn2+ ions for their function in dephosphorylating proteins at their serine and threonine sites, a very important post-translational protein modification167.

Genetic regulation of Mn transporter expression also plays a role in proper Mn homeostasis. Mammalian systems show evidence of the important role of transcriptional regulation of Mn transporters, such as that of DMT1168. DMT1 has four mRNA isoforms encoding four different proteins that differ either in their N- and C-terminals or 5' vs. 3' processing. Two of the alternatively spliced isoforms differ in their transcription start sites: Exon 1A contains an AUG codon that extends its N-terminal, while Exon 1B lacks this initiator codon and, consequently, has translation begin in exon 2. Meanwhile, two of the isoforms contain an iron responsive element (IRE) in the 3' UTR of the DMT1 mRNA. IREs serve as a very important sensing mechanism. If iron levels are low (which can indirectly affect intracellular Mn concentrations), iron regulatory proteins (IRPs) are thought to bind the IRE in the IRE-containing DMT1 isoforms to stabilize the IRE-containing message169. The presence of such isoforms and the influence of iron on their expression most likely has an effect on intracellular Mn concentrations as well, though further studies must be conducted to look at their direct relationship. Interestingly, Parkin has been shown to promote degradation of an isoform of DMT1 \textit{in vitro} through
the proteasome170.

Manganese Efflux

Until recently, the only known Mn efflux mechanism in vertebrates at the cell membrane was through the iron exporter ferroportin (FPN) (Fig 2). This protein consists of 12 transmembrane domains, with mutations resulting in the iron overload diseases “ferroportin disease” or type 4 haemochromatosis171. FPN is regulated by the hormone hepcidin, which promotes its internalization and degradation to help regulate optimal Fe levels; FPN mutations can also cause inefficient binding to hepcidin to impair this process172. In terms of Mn transport, Yin et al. have demonstrated that Fpn expression decreases Mn accumulation in cells to help ameliorate Mn-induced cytotoxicity by rescuing cell membrane leakage and Mn-induced reductions in glutamate uptake. Moreover, mice exposed to Mn exhibit increased FPN protein levels in the cortex173. These findings were further supported by export of Mn in *Xenopus laevis* oocytes expressing human FPN (SLC40A1)174, where Mn accumulation was decreased in a concentration-dependent manner and could be inhibited by lower pH levels. Moreover, FPN-mediated Mn efflux can also be partially inhibited by addition of Fe, Co or Ni174. However, it is currently unclear whether FPN is able to export the same range of divalent metals that a transporter like DMT1 can import. Mitchell et al. showed evidence in oocytes of Co and Zn efflux through FPN, but also disagreed with previous studies in FPN’s ability to efflux Mn175. Though additional studies must be conducted to further FPN’s role in Mn toxicity, it is logical that Mn would share the same exporter as Fe in the same way they share uptake routes.
Interestingly, recent findings from Tuschl et al. have described the zinc transporter, SLC30A10, as another putative Mn exporter. This study utilized whole-genome homozygosity mapping and sequencing to find alterations in the SLC30A10 gene sequence in families with hypermanganesemia and Parkinsonism. Human wildtype (WT) SLC30A10, and/or SLC30A10 missense or nonsense mutations were inserted into the Mn-sensitive yeast strain Δpmr1. It was found that Δpmr1-expressing wildtype SLC30A10 rescued growth, while Δpmr1 expressing SLC30A10 mutations retained Mn sensitivity, suggesting that WT SLC30A10 is important for Mn efflux. Moreover, a comprehensive study by Leyva-Illades et al. recently established SLC30A10 as a plasma membrane-localized Mn exporter (Fig 2) in both the invertebrate Caenorhabditis elegans model and primary midbrain neurons cultured from WT mice. Mutations in this gene associated with familial Parkinsonism resulted in impaired trafficking of the transporter to the cell surface, diminished Mn efflux and increased sensitivity to Mn exposure. The role of impaired metal homeostasis in Parkinsonism is further supported by the ability of metal chelation in patients with mutated SLC30A10 to improve clinical symptoms, decreased blood Mn levels and improved MRI hyperintensities in the basal ganglia. While chelation may take a longer duration to reverse Parkinsonism in patients carrying SLC30A10 mutations, these studies still highlight the importance of treatable Parkinsonism that is associated with metal transporter mutations.

Manganese Toxicity

The wide variety of proteins involved in regulating Mn reflects the need to balance homeostasis between necessity and toxicity, as excess Mn can result in a
neurotoxic condition known as “manganism.” James Couper first identified this condition in 1837 in five industrial workers exposed to high levels of manganese from the use of manganese oxide in the production of chloride for bleaching power. Mn poisoning leads to irreversible damage to the basal ganglia brain region that is also affected in PD, resulting in similar cognitive, emotional and motor deficits157, 180. This condition mostly arises from occupational exposure to Mn, including miners, welders, smelters and other industrial workers who handle Mn-containing steel and other manufacturing, and subsequently inhale fumes containing high levels of Mn181, 182.

In addition to industrial workers exposed to high Mn levels at their workplace, there are other populations at risk of Mn-induced toxicity. Patients suffering from hepatic encephalopathy or any stage of liver failure are at high risk of Mn toxicity, as a properly functioning biliary system is required for proper Mn excretion183. Similarly, unhealthy neonates partaking in Mn-supplemented TPN are also vulnerable to Mn toxicity184. Another significant population at risk for Mn poisoning are those suffering from Fe deficiency, one of the most common nutritional deficiencies in the world. This is due to the fact that Fe and Mn compete for the same transporters, resulting in higher Mn accumulation when Fe levels are low185, 186. Thus, in people suffering from chronic iron deficiency (e.g. iron deficiency anemia), low levels of Fe can result in high Mn accumulation over time.

Manganism & PD

Despite their overlap, manganism is still a differential diagnosis from PD, with distinctive areas of initial cell death that produce some contrasting symptomatology.
Though bradykinesia and rigidity are still noticeable, tremor is not as evident in Manganism patients. Moreover, unlike PD, dystonia is more highly prevalent in manganism; patients also exhibit a tendency to fall backwards. Similar to PD, however, manganism is progressive in nature, with only partial recovery of certain symptoms following elimination of the source of overexposure for an extended period of time.

While PD initially targets the DAergic cells of the SNpc, Mn preferentially accumulates in and damages the GABAergic cells of the globus pallidus and corpus striatum before spreading to other brain regions. Consequently, the major difference lies in the fact that one condition destroys cells responsible for dopamine production, while the other targets the receptor cells that react to dopamine. Distinguishing between the two conditions relies heavily on a variety of biomarkers and tests specific for each condition. Diagnostics using magnetic resonance imaging (MRI) techniques can visualize the increased signal intensities in the globus pallidus in T1-weighted images, though they will disappear within six months to a year of removing the source of Mn exposure. Moreover, a positron emission tomography (PET) scan can also distinguish between manganism and PD: manganism patients show a normal scan, while PD patients show reduced striatal uptake of the radioactively labeled analog of the dopamine precursor DOPA (18-fluorodopa). Another potential biomarker for manganism was recently identified using voxel-based morphometry (VBM). The study found that compared to healthy control subjects, welders chronically exposed to Mn possess decreased brain volumes in the globus pallidus and cerebellum that correlate with cognitive and motor deficits. Another key difference between manganism and PD
is the lack of effectiveness of L-DOPA treatment for manganism, contrary to PD194. Instead, treatment with the metal chelators EDTA and sodium para-aminosalicylic acid (PAS) has shown to be beneficial in some cases195,196, though this option may be most beneficial before the condition has progressed too far.

The association between occupational exposure to Mn-containing fumes (e.g., those experienced by welders) and Parkinsonism remains controversial in the literature. A cross-sectional study conducted in 2006 found a higher prevalence of Parkinsonism in Alabama welders compared to age-matched control subjects197. The same group recently published another study showing that Mn-exposed welding workers had similar scores (>15) on a commonly used questionnaire for PD motor evaluation (UPDRS3, or Unified Parkinson's Disease Rating Scale motor subsection 3) compared to newly diagnosed, untreated idiopathic PD (IPD) patients181. Yet, other studies have not found an increased risk for PD in welders. A 2012 Danish study198 and a 2005 study using data from movement disorder clinics199 found no positive association between PD and welding. However, the former study relied on hospital contacts, and the latter study relied on specialty clinic surveys to define Parkinsonism, compared to clinical examinations and/or the UPDRS3. The discrepancies in these studies may be due to differences in defining PD in their cohorts, as well as varying welding exposures to Mn.

The association between non-occupational Mn exposure and Parkinsonism is also unclear. A 2009 study from a mining district in Mexico found attention impairments in a population where a majority of participants were exposed to Mn in ambient air at levels higher than the recommended Environmental Protection Agency’s (EPA) guidelines for non-occupational environments (>0.05 µg/m3)200. Similarly, a study on the
general population living near a ferromanganese refinery in Ohio found slight, subclinical impairments in postural balance upon chronic exposures to Mn in ambient air201. Moreover, a recent 2013 study on a population living close to a manganese processing plant found decreased olfactory function compared to a population living far from the plant202. Yet, other studies have found minimal effects of Mn on the general population. A study on the role of MMT from gasoline combustion compared garage mechanics vs. blue-collar workers and found no significant difference between the two groups in whole blood Mn concentrations, with no obvious health problems203. Likewise, a more recent study found limited evidence for any association between ambient metal exposure in adults and the risk of PD using a nurses’ cohort and the EPA Air Toxics data204. More studies must be done to investigate the long-term effects of chronic, low-dose Mn exposure to the general human population, be it from gasoline combustion or other non-occupational sources found in ambient air.

\textit{Shared Molecular Mechanisms}

Though the literature remains disputed in the connection between environmental Mn exposure and Parkinsonism, the molecular mechanisms behind both PD and manganism share several key processes. A major hallmark of both conditions is increased oxidative stress. Similar to dopamine oxidation in PD, high Mn levels can result in increased oxidative stress through a variety of mechanisms. Mn can directly inhibit complexes of the electron transport chain in the mitochondria that are responsible for ATP production. This inhibition results in both the leakage of damaging free radicals, as well as ATP depletion in the cell205. Recent \textit{in vitro} evidence using the human neuroblastoma SH-SY5Y cell line has found Mn-induced changes at the DNA level, with
increased accumulation of DNA single strand breaks and oxidized thymine bases. However, pre-treatment with antioxidants could rescue these signs of oxidative damage, further supporting the role of Mn in increasing oxidative stress in human cells206. Mn can also result in apoptotic cell death through the activation of multiple caspases207-209. Moreover, Mn-exposed Gli3 cells (a human astrocyte line) show a loss in mitochondrial membrane potential and caspase-9 activation, with concomitant alterations in mitochondrial fission and fusion protein levels resulting in enhanced fragmentation210. Manganese has also been shown to affect glutamate transporter levels and overall glutamate neurotransmission, resulting in cell death from glutamate excitotoxicity, a phenomenon also seen in PD211. Another hallmark of both conditions is increased protein aggregation, with dopamine oxidation as a potential modifier of protein aggregation states in PD212. Similarly, Mn can induce aggregation of α-Syn213. The crosstalk is further evident by the fact that Mn itself can enhance DA oxidation214 and cause internalization of DAT215; Mn accumulation following high doses requires functional DAT specifically in the striatum216.

The interaction between Mn toxicity and PD-associated proteins has recently become a focus of studies in humans. Increased expression of a DMT1 isoform has been found in the SN of PD patient brains, while DMT1 expression is also significantly increased in MPTP-treated mice that also exhibit enhanced Fe accumulation and DAergic cell death217. Furthermore, a specific polymorphism in DMT1 (the CC haplotype) has recently been associated with PD in a Chinese cohort218. In the first study of its kind, Aboud and colleagues differentiated fibroblasts into human induced pluripotent stem cell (hiPSC)-derived early neural progenitor cells (NPCs) from a patient
carrying a mutation in parkin and a control subject. Though no difference in Mn cytotoxicity or mitochondrial fragmentation was found between the subjects, increased Mn-dependent RONS generation was found in the NPCs carrying the parkin deletion\(^{219}\). Furthermore, the increased RONS occurred in the face of decreased Mn accumulation in the parkin mutant cells. The role of dopamine in this interaction has been examined in vitro. Roth and colleagues found that human lymphocytes (immune cells that lack dopamine) from patients expressing mutated parkin show increased mitochondrial dysfunction from Mn exposure compared to control lymphocytes. However, they do not exhibit any difference in Mn-induced cell death or Mn accumulation\(^{220}\). Additionally, Parkin is able to selectively protect against Mn toxicity in a DAergic cell-specific manner\(^{221}\). Finally, rats exposed to Mn-containing welding fumes show increased protein levels of Parkin, in addition to the loss of TH and increased oxidative stress\(^{222}\).

Caenorhabditis elegans as a Neurotoxicity Model

Portions of this section have been published in a review article in International Journal of Molecular Sciences written by Chakraborty, Bornhorst, Nguyen and Aschner\(^{223}\), as well as a review article in Journal of Trace Elements in Medicine and Biology written by Chakraborty and Aschner\(^{224}\).

While the majority of animal studies in the PD literature utilize rodent models, the invertebrate *Caenorhabditis elegans* (C. elegans) model provides several appealing advantages to investigate the connection between Mn toxicity and PD genetics. While
Figure 3. *C. elegans* dopaminergic head neurons. Arrowheads denote the four DAergic neurons in the head of a nematode, with dendritic processes extending to the tip of the nose.
these nematodes do not possess a brain, they do contain all necessary components of
the DAergic system. This includes the homologs of the dopamine transporter (DAT-
1); the vesicular monoamine transporter 2 (CAT-1); tyrosine hydroxylase (CAT-
2) and dopamine receptors (DOP-1 through DOP-4). Out of the total 302 neurons,
hermaphroditic worms possess eight DAergic neurons: four CEP (cephalic) (Fig 3) and
two ADE (anterior deirid) neurons in the head, as well as two PDE (posterior deirid)
neurons in the tail. Male worms contain six additional DAergic neurons in the tail.
Neurons can be visualized through their transparent bodies using a fluorescent reporter,
like green fluorescent protein (GFP), that can be driven under the dat-1 promoter (e.g.,
p_dat-1::GFP). Through the use of fluorescent and confocal microscopy, degeneration
can be visualized by the presence of puncta and blebbing along dendritic processes;
shrinking of soma; dendritic strand breaks; and loss of soma and dendrites.

Moreover, dopamine-dependent behaviors, such as basal slowing response
(BSR) can also be assayed in C. elegans. BSR is a feeding behavior that is assayed via
alterations in the number of body bends in response to food availability. Using animals
lacking cat-2, the rate limiting enzyme of dopamine synthesis, Sawin et al. showed that
dopamine is required for animals to sense a bacterial lawn. Exogenous dopamine
administration can reverse this phenotype and rescue responses to WT levels. The
authors also concluded that this response is due to the mechanical sensation, rather
than chemosensory features, of bacterial stimuli. Thus, this assay can be utilized to
investigate the effects of a toxicant and/or genetic mutations on the integrity of the
dopaminergic system, as a comparison between the WT and cat-2 mutant response.
Additionally, the *C. elegans* genome has been fully characterized\(^{231}\), allowing for ease in studying genetic models of PD. Especially with a short lifespan (two to three weeks) and a quick life cycle (three days), the ease in unbiased, forward genetic screens has made *C. elegans* an attractive model to study neurodegeneration in PD\(^{232}\). Nematodes are first mutagenized to induce DNA mutations, followed by the isolation of animals with distinctive phenotypes of interest. In terms of PD, these phenotypes typically involve altered DA neuronal morphology or a DA-specific behavior. Genetic mapping of progenies showing the modified trait is used to determine the location of the altered loci included\(^{3}\). Because *C. elegans* reproduce quickly to generate 200-300 worms in one brood, genetic screens involving large numbers of animals can be performed within a relatively short amount of time.

Alternatively, reverse genetics is also a simple approach to study the effects of a specific gene of interest that may be involved in neurodegeneration. Transgenesis in worms is typically accomplished through microinjection and bombardment techniques. The former involves microinjecting a plasmid containing the regulatory sequence of the gene of interest fused to a fluorescent reporter that can later be used as a readout for that gene. Similarly, subcellular targeting sequences (like the nuclear localization signal, NLS; or the mitochondrial targeting sequence, MTS), as well as cell or tissue-specific promoters (e.g., the aforementioned \(p_{dat-1}::GFP\) transgene) can also be included in the plasmid to drive targeted gene expression. Microinjection usually results in an unstable, extrachromosomal array, requiring the subsequent use of ultraviolet (UV) or gamma irradiation to fully integrate the transgene\(^{233}\). A second technique involves microparticle bombardment, otherwise known as biolistic transformation. Although this results in low-
copy expression, the desired transgene is fully integrated into the genome234. The commercial availability of genetic knockout animals through the \textit{Caenorhabditis} Genetics Center (CGC) is possible due to distribution of isolated deletion mutants from both the National BioResource Project of Japan (NBRP) and the \textit{C. elegans} Gene Knockout Consortium (GKC)235.

\textbf{PD Genetics Homology in C. elegans}

In addition to showing conservation of the DAergic system, worms also contain homologs for several of the genes associated with autosomal recessive PD, including \textit{parkin}, \textit{pink1} and \textit{dj1}. There is no known homolog for the \textit{SNCA} gene in the \textit{C. elegans} genome.

\textit{parkin/pdr-1}

In \textit{C. elegans}, \textit{pdr-1} (PD related 1) is a homolog for \textit{parkin} that shows conservation of its protein function as an E3 ubiquitin ligase. Similar to \textit{parkin}, the \textit{pdr-1} homolog is ubiquitously expressed in the worm, and shows high expression in both cell bodies and dendrites of neurons236. This gene in worms demonstrates how vulnerability to particular toxicants may be specified by a particular genetic mutation. For example, compared to wildtype worms, \textit{pdr-1} knockout worms show increased lethality and shortened lifespan upon exposure to methylmercury (MeHg) that correspond to increased RONS induction. However, the \textit{pdr-1} mutants do not show the same dopamine-dependent behavioral deficits that wildtype worms do upon MeHg exposure237. On the other hand, these same \textit{pdr-1} knockout worms also exhibit increased lethality and shortened lifespan upon Mn exposure, yet they do show
enhanced Mn-induced DAergic neurodegeneration compared to wildtype worms. Interestingly, *pdr-1* deletion mutants do not exhibit sensitivity to paraquat, FeCl$_2$ or CuCl$_2$ treatment, but do show sensitivity to rotenone treatment238.

pink1/pink-1

While the *pink1* homolog in worms, *pink-1*, has not been studied in depth, it shows conservation in cytoplasmic and mitochondrial localization, as well as its serine-threonine kinase domain. Moreover, in response to paraquat-induced RONS generation, *pink-1* deletion mutants exhibit shortened mitochondrial cristae and neuronal axon pathfinding defects239. More studies are necessary in examining whether its role in mitophagy, along with *pdr-1*'s contributions, is conserved in *C. elegans*.

dj1/djr-1.1 and 1.2

Nematodes contain two homologs for DJ-1 (DJR-1.1 and DJR-1.2) that exhibit differential tissue expression patterns. DJR-1.1 in *C. elegans* is detected in both the nucleus and cytoplasm, while DJR-1.2 shows cytosolic expression in head neurons101. DJR-1 knockout worms exhibit increased vulnerability to rotenone-induced toxicity that can be rescued by a combinatory treatment of the mitochondrial complex II activator D-β-hydroxybutyrate and the anti-apoptotic tauroursodeoxycholic acid238. DJ-1 also possesses glyoxalase activity that is vital in detoxifying reactive glyoxals to prevent the formation of advanced glycation end products that have been observed in PD. While DJR-1.1 is more efficient than DJR-1.2 in protecting worms against glyoxals, DJR-1.2’s neuronal expression confers protection against gloxyal-induced DAergic cell death101. Furthermore, dauer-stage worms show markedly increased expression of DJR-1.2 that
is mediated by DAF-16, the C. elegans homolog for the mammalian FoxO protein that regulates entry into this stage. Moreover, dji-1.2 expression is also likely to be regulated by insulin signaling.

Manganese Transporter Homology in C. elegans

The C. elegans genome also contains homologs for key components of Mn transport. Similar to the PD-associated genes, worms homologs possess multiple isoforms for a particular gene that may contribute unique aspects of the total function.

Uptake via DMT1/SMF1-3

Au et al. characterized an intricate Mn transport mechanism in C. elegans by investigating the homologs for DMT1: SMF1, SMF2 and SMF3. Protein sequence analysis was conducted to find that all three homologs show high homology to human DMT1 and contain both the characteristic 12 transmembrane domains and a consensus transport sequence (CTS). Deletion mutants of the three homologs from the CGC were then used to assess whether loss-of-function or down-regulation of these transporters confers sensitivity to Mn exposure. Both smf-1(eh5) and smf-3(ok1035) deletion mutants exhibited heightened resistance to an acute (30 minutes) MnCl₂ exposure when compared to wild-type Bristol N2 worms. This was evident with a significantly higher LD₅₀ for these mutants 24 hours after treatment. smf-1(eh5) mutants were almost twice as resistant to Mn as wild-type worms, with an LD₅₀ of 94 mM MnCl₂ compared to the N2 LD₅₀ of 47 mM. smf-3(ok1035) deletion mutants showed an even higher level of resistance, with an LD₅₀ of 126 mM. These data suggest that these two homologs somehow mediate Mn uptake, as the lack of functional SMF1 and SMF3 does not increase sensitivity to Mn compared to wildtype worms. On the other hand, smf-
2(gk133) deletion mutants exhibited hypersensitivity to Mn exposure compared to wild-type worms (LD$_{50}$ of 26 mM), suggesting that functional SMF2 is somehow protective against Mn toxicity in worms.

To further corroborate the role of the SMF proteins in regulating Mn homeostasis, metal content analysis was conducted using graphite furnace atomic absorption spectrometry (GFAAS). All strains showed increases in Mn accumulation in a dose-dependent manner. *smf-1(eh5)* deletion mutants accumulated less Mn than wildtype worms, though not significant at any of the concentrations assessed. However, *smf-3(ok1035)* mutants accumulated the least amount of Mn compared to all other strains, reaching significantly lower levels at 100 mM and 150 mM MnCl$_2$. Interestingly, the *smf-2* deletion mutants exhibited significantly higher Mn content than the other strains upon exposure to 35 mM, 100 mM and 150 mM MnCl$_2$. These Mn content data paralleled the Mn toxicity evidence: without SMF1 and SMF3, the treated worms cannot accumulate Mn upon exposure, indicating a prominent role for uptake.

In order to investigate differential expression patterns, transgenic worms expressing GFP under the control of the *smf1*, *smf2*, or *smf3* promoters were created, in addition to strains expressing GFP-tagged SMF1, SMF2 and SMF3. Using both transcriptional and translational fusion strains, both SMF1 and SMF3 show localization to major epithelial tissues (intestine, rectal gland cells, uterus, vulva, epidermis and sensory organs), whereas SMF2 remains in minor epithelial (pharynx, pharyngeal-intestinal valve) 3. At the cellular level, SMF1 and SMF3 also both localize to the apical membrane, while SMF2 is mostly cytoplasmic. Upon Mn exposure, SMF1::GFP and SMF2::GFP reporter strains show no change in localization or expression. SMF3::GFP,
however, shows a remarkable change in both localization and GFP intensity upon acute exposure to Mn. One hour post-treatment, SMF3::GFP worms show a dramatic translocation of SMF3 into apical vesicular compartments in the intestine. However, five hours after treatment, this intestinal GFP signal significantly decreases and is no longer localized to apical vesicles. This process is completely reversible, as SMF3::GFP worms return their expression level and intracellular localization to normal by 30 hours post-treatment241. Thus, these studies indicate an interconnected network of Mn homeostatic control through three homologs: SMF1 and SMF3 are the DMT1 isoforms responsible for Mn uptake in \textit{C. elegans}, with SMF3 being the most DMT1-like homolog.

\textit{Efflux via FPN/FPN-1.1-1.3}

Similar to mammalian systems, Mn efflux is less understood than Mn uptake in worms. The \textit{C. elegans} genome contains three homologs for this Mn/Fe exporter: FPN-1.1, FPN1.2 and FPN1.3. While not much is yet understood about their separate functions, \textit{fpn-1.1} shows the highest homology to mammalian \textit{fpn} and is expressed in the intestine and muscle. Its expression in mammalian cells results in iron export and plasma membrane localization, with iron deprivation resulting in internalization. However, while mammalian FPN has a hepcidin-binding domain, \textit{C. elegans} lack hepcidin genes. Consequently, FPN-1.1 lacks the critical cysteine residue needed for this interaction and subsequent regulation242.

\textit{Intracellular buffering via PMR1/CePMR-1}

Intracellular Mn buffering in \textit{C. elegans} has not yet been fully elucidated. However, the nematode genome does contain a homolog for the P-type ATPase pump
known to transport both Ca$^{2+}$ and Mn$^{2+}$ into Golgi apparatus243. This homolog, CePMR-1, shows expression in hypodermal seam cells, intestine and spermatheca, with conservation of its subcellular localization in Golgi apparatus. pmr-1 knockdown results in increased sensitivity to MnCl$_2$ exposure and enhanced resistance to paraquat. Further linking this pump to intracellular Mn regulation, pmr-1 knockdown also ameliorates paraquat-induced toxicity of smf-3 RNAi worms244. Interestingly, the loss of pmr-1 also results in resistance against α-Syn-mediated DAergic cell death in *C. elegans*245, providing additional support for the role of Mn toxicity in Parkinsonism.

Unlike mammalian evidence for Mn sequestration into mitochondria via the Ca$^{2+}$ uniporter158, no studies have investigated a similar transport mechanism in *C. elegans*. However, our laboratory has found evidence of a putative MTS in the N-terminal of SMF-3241. While our published studies do not show mitochondrial localization in epithelial tissues, future studies should investigate the potential of SMF-3 mediated, mitochondrial Mn import in *C. elegans* neurons.

Overview of Specific Aims

Though genetic causes have been linked to PD, there is evidence of heterogeneity in age-of-onset and symptomatology in these cases. Moreover, the majority of PD cases remain idiopathic in nature. Together, these findings suggest the possibility of contributions from environmental factors, like Mn, in PD pathogenesis. The convergence of Mn toxicity and Parkinsonism on the same brain region (basal ganglia) to produce similar phenotypic outcomes also warrants further investigation into the
“multiple-hit” hypothesis behind PD, which questions whether a particular genetic risk factor increases susceptibility of DAergic neurons to environmental risk factors. Using the invertebrate C. elegans model system, the work presented in this thesis aims to investigate putative gene-environment interactions between PD genetic risk factors and Mn toxicity. The overarching hypothesis of this thesis is that the presence of early-onset PD genetic risk factors will increase vulnerability to Mn toxicity in C. elegans, ultimately resulting in damage to the DAergic system.

Chapter 2: The effects of *pdr-1*, *pink-1*, and *djr-1* loss on Mn toxicity will be discussed. This chapter supports the protective nature of human wildtype α-Syn expression in C. elegans against Mn toxicity in the background of *pdr-1* and *djr-1* loss, and implicates a role of increased extracellular dopamine in preventing α-Syn–mediated rescue of DAergic neurodegeneration.

Chapter 3: The role of *pdr-1* in Mn homeostasis will be discussed. In particular, the loss of *pdr-1* results in altered mRNA expression of *fpn-1.1*, with *fpn-1.1* overexpression in *pdr-1* mutants improving Mn-induced lethality, oxidant metal accumulation, mitochondrial DNA integrity and DA-dependent behavioral output.
CHAPTER II

THE EFFECTS OF PDR-1, PINK-1 AND DJR-1.1 LOSS IN MANGANESE-INDUCED TOXICITY AND THE ROLE OF α-SYN IN C. ELEGANS

Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disorder in the U.S., affecting nearly 1% of the population. With an age of onset typically around 60 years of age, this disease manifests a selective dopaminergic (DAergic) neuronal loss in the substantia nigra pars compacta (SNpc), resulting in overt motor and cognitive deficits. The cardinal motor symptomatology of PD includes bradykinesia, rigidity, tremors and postural instability that may be preceded by emotional instability and cognitive problems. As age remains the most significant risk factor for PD pathogenesis, the ever-increasing human lifespan has produced a financial and emotional burden worldwide. Untenable treatment options that do not target the etiology of PD are a major public health concern, and warrant further investigations into the specific mechanisms behind PD pathophysiology.

While the majority of PD cases are idiopathic, many genes have now been associated with the disease, including DJ1, PINK1, parkin, NURR1, LRRK2, UCH-L1, and α-synuclein. The current study focuses on the major early-onset, familial PD genes: parkin, pink1 and dj1. Homozygous mutations in the PARK2/parkin gene are responsible for nearly 50% of an autosomal recessive, early-onset, familial form of PD. This gene encodes for an E3 ubiquitin ligase involved in the ubiquitin proteasome system (UPS) that targets substrates for degradation. Mutations in this gene result in impaired ligase activity and substrate binding that can lead to increased protein...
aggregation 78. Parkin knockout (KO) models show a variety of PD-associated phenotypes, including hypokinetic deficits, DAergic cell loss 247 and increased extracellular dopamine (DA) levels in the striatum 79.

The PD-associated protein known as PINK1, or PTEN-induced kinase 1, is a mitochondrial-targeted protein that contains a highly conserved serine/threonine kinase domain 248, 249. Homozygous mutations in pink1 are also connected to autosomal recessive, early-onset PD 84. These mutations typically result in impaired kinase activity 86 that is otherwise critical for maintaining mitochondrial integrity, as phosphorylation targets include mitochondrial fission and fusion factors 87, as well as the mitochondrionally-located serine protease HtrA2 88. Wildtype PINK1 has been shown to protect against mitochondrial toxin-induced DAergic cell death, as well as reducing apoptotic caspase levels and cytochrome c release from mitochondria 90. Pink1 mutants show increased DAergic cell death 250 and impaired DA release 91.

Recent studies have identified parkin as a PINK1 phosphorylation target. In fact, these two proteins work in parallel to promote mitophagy through a PINK1-mediated phosphorylation (and autophosphorylation) and recruitment of parkin to mitochondria with a lowered membrane potential 35, 95, 96. Various modulators of this interaction have recently been introduced, including the mitochondrial fusion factor Mitofusin 2 (Mtnf2) and voltage-dependent anion channels (VDACs) 36, 97. This novel role for both parkin and PINK1 reveals the importance of maintaining proper mitochondrial trafficking and turnover, signifying an impaired clearance of defective mitochondria as a potential mechanism in the pathophysiology of PD.
Additionally, mutations in the *PARK7/dj1* gene are also associated with autosomal recessive, early-onset PD\(^8\). This gene encodes for a protein that functions as an oxidative stress sensor, where oxidation of a cysteine residue results in translocation of the acidic isoform from the cytoplasm to mitochondria\(^9\). Mutations in *dj1* result in increased RONS levels, impaired mitochondrial energetics\(^10\) and DAergic cell death, while overexpression protects against DA toxicity and cell loss\(^1\). Interestingly, DJ1 has also been shown to form a multi-protein complex with parkin and pink1\(^7\), though this remains controversial. Moreover, DJ1 up-regulation can rescue the loss of PINK1-mediated sensitization of DAergic neurons in the SNpc to a mitochondrial toxin\(^9\). The rescue of pink1 loss-mediated mitochondrial deficits by DJ1 was also seen in *Drosophila*, but showed no rescue in parkin mutants\(^1\). These data reveal a role of DJ1 acting in parallel with the parkin/PINK1 pathway.

Another gene implicated in PD pathophysiology is *SNCA*\(^1\) that encodes for \(\alpha\)-synuclein (\(\alpha\)-Syn), the major aggregated component of Lewy body depositions. Pathogenic mutations in the *SNCA* gene have been shown to promote increased aggregation of the protein\(^11\),\(^1\). While the function of \(\alpha\)-Syn remains unclear, high expression is found in neuronal presynaptic terminals. Recent evidence has implicated \(\alpha\)-Syn in regulating synaptic vesicle release, mobility and recycling\(^2\),\(^5\),\(^7\), along with decreased DA release from vesicles in the background of \(\alpha\)-Syn overexpression\(^2\). Wildtype \(\alpha\)-Syn has been shown to inhibit tyrosine hydroxylase (TH) activity, suggesting a physiological role in controlling optimal DA biosynthesis\(^2\). However, aggregated forms are no longer able to inhibit TH activity, with higher TH phosphorylation present\(^2\). Studies have found that differential \(\alpha\)-Syn levels may alter neuronal susceptibility to
toxins; wildtype or low levels of the protein may be protective against oxidative insults \(^{109}\), while high intracellular levels can promote abnormal and pathogenic aggregation of the protein \(^{110}\). Elucidating the wildtype role of α-Syn and its expression levels in the background of other PD genes may provide deeper insight into the neuroprotective or neurotoxic nature of α-Syn in PD.

While genes such as \(SNCA\), parkin, \(pink1\) and \(dj1\) may be associated with PD, the heterogeneity in age-of-onset, as well as 90% of cases being sporadic in nature, warrants investigation into the role of environmental factors in PD etiology. One such factor is manganese (Mn). This is an essential trace element that is necessary for proper immune function, bone growth, digestion, reproduction, as well as serving as an important cofactor for many enzymes \(^{138}\). However, overexposure can result in symptomatology that resembles PD \(^{194, 252}\). Outside of daily dietary Mn intake through various food sources, environmental sources of Mn exposure can include drinking water (groundwater), pesticides, manufacturing by-products, and airborne exposure upon combustion of the fuel additive methylcyclopentadienyl manganese tricarbonyl (MMT). However, excessive occupational Mn exposure may also arise from welding, steel mining, smelting, and other industrial occupations \(^{253}\). Several studies have already begun to examine gene-environment interactions between Mn exposure and PD-associated genes. For example, rats exposed to Mn-containing welding fumes show an increase in parkin protein levels \(^{222}\); Parkin was also shown to selectively protect against Mn-induced DAergic cell death \(in vitro\) \(^{221}\). Additionally, significant evidence exists for an association between Mn and α-Syn, with several studies finding Mn-induced changes in α-Syn expression levels, conformation and aggregation \(^{213, 254}\).
In this work, the tractable, invertebrate *Caenorhabditis elegans* (C. elegans) model system expressing human wildtype α-Syn was used for the first time to examine the roles of several early-onset, PD-associated genes (*pdr-1, pink-1* and *djr-1.1*) and α-Syn in mediating Mn-induced neurotoxicity. We demonstrate a novel role for α-Syn in altering Mn accumulation in the background of mutated genes (*pdr-1* and *djr-1.1*) through the utilization of inductively coupled plasma-mass spectrometry (ICP-MS/MS), as well as visualizing intraworm Mn levels by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Furthermore, we provide support for a neuroprotective role of wildtype α-Syn that may be dependent upon its expression level and only in the background of select genes, suggesting distinctive roles for each of the PD genes studied in Mn-induced DAergic neurotoxicity.

Materials & Methods

C. elegans Strains and Handling – *C. elegans* strains were handled and maintained at 20°C as previously described. The following control strains were used: N2, wildtype (*Caenorhabditis Genetics Center, CGC*); and BY200, *pdat-1::GFP(vtIs1)* V (kindly provided by the Blakely laboratory, Vanderbilt University Medical Center). The following deletion mutants were used: VC1024, *pdr-1*(gk448) III (CGC); *pink-1*(tm1779) II; and *djr-1.1*(tm918) II. These deletion strains were also crossed with the BY200 strain for GFP control studies. The following α-synuclein-containing strains were kindly provided by the Caldwell laboratory (University of Alabama): UA44, *pdat-1::α-Syn, pdat-1::GFP[baln11]*; UA88, *pdr-1*(tm598), *pdat-1::α-Syn, pdat-1::GFP[baln11]*; UA84, *djr-
1.1 (tm918), \(p_{dat-1}::\alpha\)-Syn, \(p_{dat-1}::\text{GFP}[\text{baln11}] \); and UA86, \(p\text{ink-1}(tm1779) \); \(p_{dat-1}::\text{GFP} \); \(p_{dat-1}::\alpha\)-Syn [\text{baln11}].

Preparation of MnCl\(_2\) – MnCl\(_2\) (>99.995 % purity) (Sigma-Aldrich) stock solutions were prepared in 85 mM NaCl. To prevent oxidation, fresh stock solutions were prepared shortly before each experiment.

Acute Mn Treatments and Mn-Induced Lethality Assay – 2,500 synchronized L1 worms per tube were acutely exposed to MnCl\(_2\) in triplicates in siliconized tubes for 30 minutes. Worms were then pelleted by centrifugation at 7000 rpm for 3 minutes and washed four times in 85 mM NaCl. 30-50 worms were then pre-counted and transferred to OP50-seeded NGM plates and blinded. 48 hours post-treatment, the total number of surviving worms was scored.

Mn Quantification in C. elegans – Mn content was determined after ashing of L1 worms by ICP-MS/MS. Briefly, 50,000 synchronized L1 worms were acutely treated with MnCl\(_2\). Worms were pelleted, washed five times in 85 mM NaCl and re-suspended in 1 mL 85 mM NaCl supplemented with 1% protease inhibitor. After sonication, an aliquot was taken for protein quantification using the bicinchoninic acid (BCA) assay-kit (Thermo Scientific). Subsequently, the suspension was mixed again, evaporated, and incubated with the ashing mixture (65%H\(_2\)O\(_3\)/30%H\(_2\)O\(_2\) (1/1) (both from Merck)) at 95°C for at least 12 h. After dilution of the ash with 2% HNO\(_3\) including 10 \(\mu \)g/L Rh as internal standard to compensate drift effects, the Mn concentration was determined by ICP-
MS/MS (Agilent 8800 ICP-QQQ). The nebulizer gas flow and parameters of lenses, Q1, collision cell and Q2 were tuned daily on a daily basis for maximum sensitivity (an oxide ratio of $<1.0\% \left(^{140}\text{Ce}^{60+}/^{140}\text{Ce}^+ \right)$ and a double charged ratio of $<1.5\% \left(^{140}\text{Ce}^{++}/^{140}\text{Ce}^+ \right)$ with background counts <0.1 cps) (Supplementary Figures, Table 1). The limit of quantification (LOQ) for Mn was 0.10 µg/L calculated according to the 3σ-criterion. Determinations of blank and certified reference material (CRM 414 (plankton) (Community Bureau of Reference of the Commission of the European Communities)) were performed periodically after 15 samples each.

Additionally, the Mn content was qualitatively confirmed by LA-ICP-MS analyses. Briefly, 50,000 synchronized L1 worms acutely exposed to MnCl$_2$ were pelleted and washed three times with 85 mM NaCl and two times with bidistilled water. Worms were prepared for analyses by drying single worms on microscopic slides (Thermo Scientific). The laser ablation system LSX213G2+ (CETAC Technologies) was coupled to an ICP-MS (ICAP Qc, Thermo Fisher Scientific). Slides were placed in the ablation chamber and ablated linewise using a quintupled Nd:YAG laser (wavelength 213 nm, repetition frequency 20 Hz spot, spot diameter 4 µm). The ablated material was transported into the ICP-MS by the carrier gas (He/Ar) and analytes were determined using the MS in KEDS mode (Supplementary Figures, Tables 2 & 3). In addition, a 10 µg/L Rh-solution including 2% HNO$_3$ was continuously delivered into ICP via a cyclonic spraychamber to compensate drift effects during analysis.

RONS Measurement – The formation of reactive oxygen and nitrogen species (RONS) in whole L1 worms was evaluated by a 5(6)-Carboxy-2’,7’-dichlorodihydrofluorescein-
diacetate (carboxy-DCFH-DA)-based plate reader system. Briefly, a carboxy-DCFH-DA stock solution (50 mM in DMSO) (Invitrogen) was diluted 1:100 with M9 buffer, and synchronized L1 worms were exposed to 500 µM for 1 h in the dark. After 1 h, the worms were washed two times with M9 buffer and two times with 85 mM NaCl to remove all carboxy-DCFH-DA content outside the worm. 10,000 worms were transferred to each well of a 96 well plate and incubated with H₂O₂ (positive control) or MnCl₂ (respective LD₂₅ concentration). Immediately after incubation, the intracellular oxidation of carboxy-DCFH, which correlates with intracellular RONS, was monitored (excitation 485 nm/emission 535 nm) by a microplate reader (FLUOstar Optima microplate reader, BMG Labtechnologies), and kinetics were constructed up to 420 min. To exclude interfering fluorescence of the matrix, data were normalized to a control (dye-loaded cells without a RONS generator).

Glutathione Quantification – Total intracellular glutathione levels (reduced and oxidized GSH) have been determined using the “enzymatic recycling assay”, as previously described²⁵⁷,²⁵⁸. Briefly, whole worm extracts were prepared out of 50,000 L1 worms acutely exposed to MnCl₂. This was followed by washes with 85 mM NaCl and sonication of the pellet in 0.1 mL ice-cold extraction buffer (1% Triton X-100, 0.6% sulfosalicylic acid) and 1% protease inhibitor in KPE buffer (0.1 M potassium phosphate buffer, 5 mM EDTA). Intracellular GSH was quantified by measuring the change in absorbance per minute at 412 nm by a microplate reader after reduction of 5,5'-dithio-2-nitrobenzoic acid (DTNB, Sigma-Aldrich).
TaqMan Gene Expression Assay – Total RNA was isolated via the Trizol method. Briefly, following treatment, 1 mL of Trizol (Life Technologies) was added to each tube containing worms resuspended in 100 μl 85 mM NaCl, followed by three cycles of freezing in liquid nitrogen and thawing at 37°C. 200 μL of chloroform was then added to each tube, followed by precipitation using isopropanol and washing with 75% ethanol. Following isolation, 1 μg total RNA was used for cDNA synthesis using the High Capacity cDNA Reverse Transcription Kit (Life Technologies), per manufacturer’s instructions. cDNA samples were stored at 4°C. Quantitative real-time PCR (BioRad) was conducted in duplicate wells using TaqMan Gene Expression Assay probes (Life Technologies) for each gene, using the afd-1 (actin homolog) housekeeping gene for normalization after determining the fold difference using the comparative $2^{-\Delta\Delta Ct}$ method. The following probes were used: human SNCA (Assay ID: Hs01103383_m1); dat-1 (Assay ID: Ce02450891_g1); skn-1 (Assay ID: Ce02407447_g1); and afd-1 (Assay ID: Ce02414573_m1).

Dopaminergic Degeneration Assay – 2,500 synchronized L1 worms per tube were acutely exposed to MnCl$_2$. Upon washing, all worms were plated on OP50-seeded NGM plates. 48 hours post-treatment, 50 worms were transferred to fresh OP50-seeded NGM plates and blinded for subsequent imaging. At 72 hours post-treatment, 15 worms per condition were mounted onto 4% agar pads (in M9 buffer) and anesthetized with 0.2% tricaine/0.02% tetramisole in M9 buffer. Scoring of neuronal defects was performed using an epifluorescence microscope (Nikon Eclipise 80i) equipped with a Lambda LS Xenon lamp (Sutter Instrument Company) and Nikon Plan Fluor 20x dry and Nikon Plan...
Apo 60x 1.3 oil objectives. Each worm was scored for the absence ("normal") or presence of any of the following morphological changes: puncta formation along dendritic processes; shrunken soma; and/or loss of soma and/or dendrites ("degenerated"). Representative confocal images (Carl Zeiss MicroImaging, Inc.) of each morphological phenotype were taken and processed as previously described.260

α-Syn Protein Levels – The α-Syn protein level was quantified by SDS-PAGE/western blot analysis as described previously, with slight modifications. 150,000 synchronized L1 worms acutely treated with MnCl₂ were washed three times with 85 mM NaCl. Afterwards, the worm pellet was re-suspended on ice in lysis buffer (RIPA buffer (Sigma-Aldrich), 1% protease inhibitor), and the worm pellets were temporarily frozen in liquid nitrogen. The extracts were homogenized by sonication and centrifugation, followed by using an aliquot of the isolated supernatant for protein quantification by the BCA assay. 30 µg of the protein sample were separated by 12% denaturating SDS-PAGE and transferred to a nitrocellulose membrane (Whatman) by tank blotting. Membranes were blocked for 1 h in 5% bovine serum albumin (BSA) in Tris buffered saline (TBS) containing 0.1% Tween-20 (TBST). Subsequently, the blots were incubated with the primary mouse monoclonal anti-α-Syn antibody (1:500) (#sc-12767, Santa Cruz Biotechnology) or mouse monoclonal anti-β-actin antibody (1:10000) (Sigma-Aldrich) (as loading control) overnight at 4°C. Following incubation with an horseradish peroxidase (HRP)-conjugated secondary antibody for 1 h at room temperature, the visualization was obtained by Luminata™ forte western HRP substrate (Millipore) and detection by a chemiluminescence imaging system (ChemiDoc MP, Bio-
Protein levels were quantified by densitometric analysis with ImageJ software (National Institute of Health) and normalized to controls.

Statistics – Dose-response lethality curves and all histograms were generated using GraphPad Prism (GraphPad Software Inc.). A sigmoidal dose-response model with a top constraint at 100% was used to draw the lethality curves and determine the respective LD$_{50}$ values (values represent the respective Mn concentrations that induce 50% reduction in survival), followed by a one-way analysis of variance (ANOVA) with a Dunnett’s post-hoc test to compare all strains to their respective control strains. In order to compare all α-Syn to non-α-Syn-containing strains, a one-way ANOVA using Bonferroni’s multiple comparison post-hoc test was conducted. Two-way ANOVAs were performed on metal content, RONS, GSH, TaqMan gene expression and western blot densitometry data, followed by Bonferroni’s multiple comparison post-hoc tests. Degeneration data was plotted as a stacked histogram and analyzed using an unpaired t-test between groups (vs. respective control strains).

Results

pdr-1 mutants are hypersensitive to acute Mn exposure – Assessment of dose-response survival curves following acute Mn exposure revealed a leftward-shift in the curve for *pdr-1* mutant worms compared to N2 wildtype (WT) worms (Fig 4A). Thus, *pdr-1* mutants exhibited hypersensitivity to Mn-induced lethality (LD$_{50}$ = 5.59 mM) compared to WT worms (LD$_{50}$ = 10.43 mM). However, *djr-1.1* mutants were less
Figure 4. *pdr*−1 mutants are hypersensitive to an acute Mn exposure. (A,B) Dose-response survival curves following acute Mn exposure and the respective LD₅₀ doses. All values were compared to non-treated worms set to 100% survival and plotted against the logarithmic scale of the used Mn concentrations. (A) N2 (wildtype, WT) and *pdr*−1, *pink1*−1 and *djr*−1.1 deletion mutants were treated for 30 min at L1 (larval) stage with increasing concentrations of MnCl₂. (B) UA44 (WT; human α-Syn), UA88 (*pdr*−1 KO; human α-Syn), UA86 (*pink1* KO; human α-Syn) and UA84 (*djr*−1.1 KO; human α-Syn) were treated for 30 min at L1 stage with increasing concentrations of MnCl₂. (A,B) Data are expressed as means ± SEM from at least four independent experiments. Statistical analysis of the LD₅₀: **p < 0.01 versus respective wildtype worms. (C) Statistical comparison of respective non-α-Syn and α-Syn containing worms: *p < 0.05. KO = deletion mutants.
sensitive to acute Mn exposure vs. WT worms. Of the two djr-orthologues, the \textit{djr-1.1} shows the highest homology to vertebrate \textit{dj1} and broadest expression (similar to the other deletion mutants) 101, 262. Therefore, all studies were carried out in the \textit{djr-1.1} orthologue. Treating worms containing human WT \(\alpha\)-Syn in addition to the respective genetic deletions (\textit{pdr-1}, \textit{pink-1} and \textit{djr-1.1}) with Mn led to increased sensitivity compared to the WT \(\alpha\)-Syn control strain (Fig 4B). One-way ANOVA analysis (comparing data from fig. 1A and B) showed a significantly increased sensitivity of the \(\alpha\)-Syn-containing \textit{djr-1.1} mutants compared to the \textit{djr-1.1} mutants alone (Fig 4C).

\textit{Enhanced Mn accumulation in pdr-1 and djr-1.1 mutants is attenuated by WT \(\alpha\)-Syn expression} - To determine whether a genetic deletion and/or the presence of WT \(\alpha\)-Syn alters Mn bioavailability in \textit{C. elegans}, Mn content was measured by ICP-MS/MS. Overall, the analyzed strains (Fig 5A, B) showed a dose-dependent increase in Mn content (two-way ANOVA, concentration \(p < 0.0001\)). The \textit{pdr-1} and \textit{djr-1.1} deletion mutants exhibited an enhanced Mn accumulation compared to WT worms (fig. 5A). \textit{pink-1} mutants showed Mn accumulation that was indistinguishable from WT worms (fig. 5A). Notably, the \textit{pdr-1} and \textit{djr-1.1} mutants containing \(\alpha\)-Syn accumulated less Mn compared to the respective deletion mutants alone (Fig 5C, D). While the rescue effect was not significant for the \textit{pdr-1} mutants (Fig 5C), the decrease in accumulation was significant at 7.5 and 10 mM Mn for the \textit{djr-1.1} mutants (Fig 5D). Moreover, we qualitatively confirmed the intraworm Mn accumulation using LA-ICP-MS. WT and \textit{djr-1.1} mutants, with and without \(\alpha\)-Syn, were treated acutely with LD\textsubscript{50} dose (10 mM) (Fig
Figure 5. Enhanced Mn accumulation in pdr-1 and djr-1.1 mutants is reversed by WT α-Syn expression. (A-D) Intraworm Mn content after acute treatment with MnCl$_2$ was quantified by ICP-MS/MS. All values were normalized to non-treated wildtype (WT) worms. (A) N2 (WT) and pdr-1, pink-1 and djr-1.1 deletion mutants were treated at L1 stage for 30 min with increasing concentrations of MnCl$_2$. (B) UA44 (WT; human α-Syn), UA88 (pdr-1 KO; human α-Syn), UA86 (pink-1 KO; human α-Syn) and UA84 (djr-1.1 KO; human α-Syn) were treated at L1 stage for 30 min with increasing concentrations of MnCl$_2$. (C) Comparing intraworm Mn content of pdr-1 mutants and UA88 (pdr-1 KO; human α-Syn) after 30 min treatment with MnCl$_2$ (data from A,B). (D) Comparing intraworm Mn content in djr-1.1 mutants and UA84 (djr-1.1 KO; human α-Syn) after 30 min treatment with MnCl$_2$ (data from A,B). (A-D) Data are expressed as means + SEM from at least six independent experiments. Statistical analysis by two-way ANOVA: (A) interaction p < 0.001, genotype p < 0.001, concentration p < 0.001; (B) interaction ns, genotype p < 0.001, concentration p < 0.001; (C) interaction ns, genotype ns, concentration p < 0.001; (D) interaction p < 0.001, genotype p < 0.001, concentration p < 0.001. ***p < 0.001, **p < 0.01, *p < 0.05. (E) 2D images and respective microscope images of WT worms (I, non-treated; II, 10 mM MnCl$_2$); djr-1.1 deletion mutants (III) and UA84 (djr-1.1 KO; human α-Syn) (IV) incubated with 10 mM MnCl$_2$ for 30 min. KO = deletion mutants; ns = not significant.
4). The images corroborate the ICP-MS/MS metal content analyses, showing increased Mn accumulation in the djr-1.1 mutants compared to the α-Syn-containing djr-1.1 mutants (Fig 5E).

Mn-induced oxidative stress is exacerbated in pdr-1 and djr-1.1 mutants, but rescued by α-Syn expression - Oxidative stress is implicated in Mn-induced neurotoxicity. Additionally, parkin, pink1 and dj1 are all involved in regulating oxidative stress pathways. Therefore, we investigated the relationship between Mn and their oxidative stress and defense responses by measuring the presence of RONS and total GSH levels. In order to determine the presence of RONS in whole worms, a carboxy-DCFH-DA based reader test system was established (data not shown). Figure 6A shows Mn-induced RONS levels in WT worms, pdr-1 and djr-1.1 mutants, along with their respective α-Syn-containing strains. In response to sub-lethal, acute Mn treatment (respective LD_{25}), WT worms showed a time-dependent increase in Mn-induced RONS that was exacerbated in pdr-1, pink-1 and djr-1.1 mutants (data are normalized to respective control (dye-loaded cells without a RONS generator) at each respective timepoint). As illustrated in Fig 6A (c & d), pdr-1 and djr-1.1 mutants containing α-Syn showed a lower Mn-induced RONS level compared to the non α-Syn containing deletion mutants.

Next, the redox status of the deletion mutants was examined by measuring total GSH levels. Notably, the deletion mutants contained significantly less total GSH than the WT worms (Fig 6B). Mn treatment resulted in a slight reduction of GSH levels, which did not attain statistical significance. The significant decrease at 10 mM Mn in the
Figure 6. Mn-induced oxidative stress is exacerbated in pdr-1 and djr-1.1 mutants, but rescued by α-Syn expression. (A) (a) Effect of MnCl₂ on the RONS induction in N2 (WT) and pdr-1, pink1 and djr-1.1 deletion mutants after 1 h dye loading and subsequent MnCl₂ post-treatment with their respective LD₅₀ doses. (b) Effect of MnCl₂ on the RONS induction of UA44 (WT; human α-Syn), UA88 (pdr-1 KO; human α-Syn), UA86 (pink1 KO; human α-Syn) and UA84 (djr-1.1 KO; human α-Syn) after 1 h dye loading and subsequent MnCl₂ post-treatment with their respective LD₅₀ doses. (c) Comparing Mn-induced RONS induction of pdr-1 mutants and UA88 (pdr-1 KO; human α-Syn) (see B,a and B,b). (d) Comparing Mn-induced RONS induction of djr-1.1 mutants and UA84 (djr-1.1 KO; human α-Syn) (see B,a and B,b). (A) Shown are mean values (+ SEM) of at least four measurements, which were normalized to the respective dye-loaded worms at the respective time-point. Statistical analysis by two-way ANOVA: (a,b,c) interaction p < 0.001, genotype p < 0.001, time p < 0.001; (d) interaction ns, genotype p < 0.001, time p < 0.001. (B) Total glutathione level of N2 (WT) and pdr-1, pink1 and djr-1.1 deletion mutants following 30 min exposure with increasing concentrations of MnCl₂. Data are expressed as means + SEM from at least five independent experiments. Statistical analysis by two-way ANOVA: interaction ns, genotype p < 0.001, concentration p < 0.01. (A-C) p < 0.001. ***p < 0.001, **p < 0.01, *p < 0.05. KO = deletion mutants; ns = not significant.
pdr-1 mutants may be due to their Mn-induced lethality at this dose (Fig 4A). The α-Syn-containing deletion mutants showed similar effects as the deletion mutants alone (data not shown). Treatment with H₂O₂ as a positive control confirmed further that the inherently decreased levels of GSH in the mutants represent an innately defective oxidative stress response, as H₂O₂ treatment did not significantly alter the GSH levels from baseline levels as compared to WT worms (data not shown).

Increased skn-1 mRNA expression in djr-1.1 and pink-1 mutants – To determine whether the differences in oxidative stress levels are associated with differences in cellular defense responses against oxidative stress, expression of the antioxidant response gene *skn-1*, the orthologue of the vertebrate gene *nrf2*²⁶⁵, was examined. Gene expression data reveal inherently upregulated *skn-1* mRNA levels in the deletion mutants compared to WT worms (Fig 7A), reaching statistical significance in the *pink1* and *djr-1.1* mutants. Acute Mn treatment resulted in an upregulation of *skn-1* mRNA at the LD₅₀ dose only in *djr-1.1* mutants. Interestingly, the *pdr-1* mutants containing α-Syn showed a slight, but not statistically significant, increase in *skn-1* mRNA expression vs. WT animals containing α-Syn, whereas the levels were decreased in the *pink-1* and *djr-1.1* mutants (Fig 7B).

DAergic neurodegeneration in WT and pdr-1 mutants is attenuated by α-Syn expression – Next, we determined whether α-Syn expression would ameliorate or exacerbate DA neurodegeneration in the deletion mutants upon acute Mn exposure. Visualization of the
Figure 7. Increased skn-1 mRNA expression in djr-1.1 and pink-1 mutants - SKN-1 expression after acute treatment with MnCl₂. Relative gene expression was determined by qRT-PCR. (A) N2 (WT) and pdr-1, pink-1 and djr-1.1 deletion mutants were treated at L1 stage for 30 min with MnCl₂ at the respective LD₂⁵ and LD₅₀ doses. (B) UA44 (WT; human α-Syn), UA88 (pdr-1 KO; human α-Syn), UA86 (pink-1 KO; human α-Syn) and UA84 (djr-1.1 KO; human α-Syn) were treated at L1 stage for 30 min with MnCl₂ at the respective LD₂⁵ and LD₅₀ doses. (A, B) Shown are mean values ± SEM of four independent experiments in duplicates normalized to the untreated wildtype and relative to afd-1/β-actin mRNA. Statistical analysis by two-way ANOVA: (A) interaction ns, genotype p < 0.01, concentration; (B) interaction ns, genotype ns, concentration ns. **p < 0.01, *p < 0.05 versus respective wildtype worms. KO = deletion mutants; ns = not significant.
architecture of the four cephalic (CEP) dopaminergic (DAergic) neurons in the head was performed using worms expressing green fluorescent protein (GFP) under the control of a promoter for the dopamine re-uptake transporter 1 (C. elegans orthologue for vertebrate DAT226, p\textsubscript{dat-1}::GFP (vtIs1). Using an objective scoring system, the CEP neurons were scored as degenerated if they exhibited any of the following: discontinuous, punctated GFP signal in the dendrites (Fig 8A, II); shrinkage of the cell body (Fig 8A, III); and/or, ultimately, total loss of soma and/or dendritic GFP signal (Fig 8A, IV). Mn treatment did not significantly increase the inherent DAergic neurodegeneration in WT worms and deletion mutants (Fig 8C, a-c). Interestingly, the expression of α-Syn significantly attenuated the DAergic neurodegeneration in untreated WT worms and pdr-1 mutants, and following acute Mn treatment at their respective LD\textsubscript{50}. However, this effect was absent in the djr-1.1 deletion mutants, as no significant change in DAergic neurodegeneration was noted in the α-Syn-containing djr-1.1 mutants compared to the djr-1.1 deletion mutants alone.

Increased α-Syn and decreased dat-1 expression in djr-1.1 deletion mutants - Prominent theories on PD-associated neurodegeneration implicate the role of α-Syn expression. Accordingly, SNCA mRNA and α-Syn protein levels were evaluated in the pdr-1 and djr-1.1 deletion mutants. To quantify the transcriptional level of SNCA, qRT-PCR was performed. Whereas SNCA mRNA expression in the untreated pdr-1 mutants was slightly downregulated (not significant), it was inherently increased in the djr-1.1 deletion mutants compared to WT worms. An acute Mn treatment at its respective LD\textsubscript{50} further enhanced the increased mRNA expression level in the djr-1.1 mutants compared
Figure 8. DAergic neurodegeneration in WT and pdr-1 mutants is attenuated by α-Syn expression – (A) Representative confocal images used in the scoring system: normal worms (I), worms showing puncta (II), shrunken soma (III) or loss of dendrites and soma (IV). (B) The CEP architecture of 15 worms per group of WT, pdr-1 and djr-1.1 mutants and the respective α-Syn-containing strains (UA44, UA86, UA88) were scored 72 hours after an acute, 30 min treatment with MnCl₂. Shown are mean values + SEM of at least four experiments each. *p < 0.05 versus respective non-treated worms without α-Syn. KO = deletion mutants; ns = not significant.
to WT worms (Fig 9A). Furthermore, western blot experiments corroborated these results, showing increased α-Syn protein levels (Fig 9B). The α-Syn protein level was slightly reduced in pdr-1 mutants, though not reaching statistical significance. Mn treatment with the respective LD$_{50}$ resulted in a significant reduction of α-Syn protein levels in the pdr-1.1 mutants compared to untreated WT worms. Notably, the djr-1.1 mutants showed a Mn-induced increase in α-Syn protein levels corresponding to the gene expression data. pink-1 mutants were indistinguishable from the WT in α-Syn gene expression and protein level (data not shown).

We further investigated possible interactions between α-Syn and the dopamine transporter (DAT), the protein responsible for synaptic DA clearance. Recent evidence points to α-Syn-mediated modulation of DAT as a potential mechanism behind the selectivity towards DAergic cell death in PD by decreasing DAT function to alter DAergic neurotransmission266. Using Real Time RT PCR, we show that pdr-1 mutants have inherently higher dat-1 mRNA levels, whereas the expression is reduced in both treated and untreated djr-1.1 mutants compared to WT worms (Fig 9C). pink-1 mutants were indistinguishable from the WT worm with respect to DA neurodegeneration and dat-1 mRNA level (data not shown).

Discussion

The specific interactions between environmental factors and various genetic deletions associated with PD pathophysiology remain poorly understood. In the present study, the invertebrate C. elegans model system was used to examine the effects of acute Mn exposure on DAergic neurotoxicity in the background of three PD-associated genes
Figure 9. Increased α-Syn expression in djr-1.1 deletion mutants - (A) SNCA mRNA expression after acute treatment with MnCl₂. Relative gene expression was determined by qRT-PCR. UA44 (WT; human α-Syn), UA88 (pdr-1 KO; human α-Syn)) and UA84 (djr-1.1 KO; human α-Syn) were treated at L1 stage for 30 min with MnCl₂ at the respective LD₅₀. Data are expressed as means ± SEM from at least four independent experiments in duplicates normalized to the untreated wildtype and relative to afd-1/β-actin mRNA. Statistical analysis by two-way ANOVA: interaction ns, genotype p < 0.001, concentration p < 0.05. **p < 0.01, *p < 0.05 versus respective wildtype worms. (B) Effect of MnCl₂ on α-Syn protein level. UA44 (WT; human α-Syn), UA88 (pdr-1 KO; human α-Syn)) and UA84 (djr-1.1 KO; human α-Syn) were treated for 30 min at L1 stage with MnCl₂ at the respective LD₅₀. Subsequently, extracts were prepared and western blotting was performed. Shown is one representative western blot in (B,b). Shown are mean values ± SEM of six independent experiments normalized to β-actin and to the untreated wildtype. Statistical analysis by two-way ANOVA: interaction ns, genotype p < 0.001, concentration ns. (C) dat-1 mRNA expression after acute treatment with MnCl₂. Relative gene expression was determined by qRT-PCR. UA44 (WT; human α-Syn), UA88 (pdr-1 KO; human α-Syn)) and UA84 (djr-1.1 KO; human α-Syn) were treated at L1 stage for 30 min with MnCl₂ at the respective LD₅₀. Data are expressed as means ± SEM from at least four independent experiments in duplicates normalized to the untreated wildtype and relative to afd-1/β-actin mRNA. Statistical analysis by two-way ANOVA: interaction ns, genotype p < 0.001, concentration ns. ***p < 0.001, **p < 0.01, *p < 0.05 versus respective wildtype worms. KO = deletion mutants; ns = not significant.
(pdr-1/parkin, pink-1/pink1 and djr-1.1/dj1) in the absence or presence of wildtype human α-Syn, a pathological PD hallmark. The ease in genetic manipulation and breeding of nematodes allowed for the quick generation and assessment of crosses needed to evaluate DAergic neurodegeneration. Moreover, this model system allows for an alternative approach to otherwise time-consuming and costly vertebrate models that contain intricate nervous systems, hindering more rapid investigations into neurodegenerative mechanisms.

As the pdr-1 mutants showed the highest sensitivity to acute Mn exposure, we examined whether they showed a differential Mn accumulation profile compared to WT worms. Interestingly, both pdr-1 and djr-1.1 mutants displayed significantly enhanced intraworm Mn accumulation, as shown by ICP-MS/MS. Mn accumulation inside the worms (and not just a measurement of metals bound to the outer worm cuticle) was also corroborated by the novel and optimized utilization of LA-ICP-MS267. Recently, our laboratory identified a network of Mn transporter genes responsible for controlling Mn homeostasis in worms. The smf1-3 genes are orthologues for the mammalian divalent metal transporter 1 (DMT1), with SMF-3 serving as the primary Mn uptake transporter in C. elegans241. Interestingly, evidence has pointed to parkin-dependent, proteasomal degradation of DMT1 levels \textit{in vitro}170. As the pdr-1 gene shows conservation of its ubiquitin ligase activity in nematodes, one could hypothesize that the loss of pdr-1 enhanced Mn uptake due to an increase in SMF-3 expression from the lack of pdr-1-mediated degradation. This interaction would be interesting to examine in this model system, as the C. elegans genome does not have nearly as many E3 ubiquitin ligases
as the human genome \(^{268}\), reducing the amount of compensatory mechanisms that may be possible in vertebrate knockout models.

Furthermore, previous evidence in *Drosophila melanogaster* has shown increased lifespan in *parkin*-null flies upon exposure to metal chelators compared to controls, indicating a heightened sensitivity to endogenous copper (Cu\(^{2+}\)) and iron (Fe\(^{2+}\)) levels \(^{269}\). This interaction was further supported by evidence showing a rescue of the *parkin* null phenotype by overexpression of a metal transcription factor (MTF-1) \(^{270}\). However, previous *C. elegans* studies in *pdr-1* mutants found no increased sensitivity upon exposure to Fe\(^{2+}\) and Cu\(^{2+}\) \(^{238}\). Our current findings of enhanced intraworm Mn accumulation corroborate a distinctive connection between parkin and metal homeostasis that may be Mn-specific, as we have also previously found that the same *pdr-1* mutants do not show significantly increased methylmercury (MeHg) accumulation compared to WT worms \(^{237}\).

Due to the close relationship between parkin and DJ1-associated pathways, it is possible that they may be directly regulating each other. New evidence suggests a novel role for DJ1 in reducing metal-induced cytotoxicity by directly binding metals *in vitro*. While this study found a weaker binding affinity for Mn compared to Cu\(^{2+}\) and mercury (Hg\(^{2+}\)) \(^{271}\), the alterations in Mn homeostasis in the worms may result in subsequent intracellular dyshomeostasis of other metals that DJ1 would typically sequester. Therefore, it is feasible that the enhancement in Mn accumulation in *djr-1.1* mutants could be due to the lack of metal binding in these animals. Notably, both *pdr-1* and *djr-1.1* mutants showed an analogous increase in Mn accumulation, yet they possessed differential neurodegeneration profiles. Parkin has recently been shown to
down-regulate DJ1 protein and mRNA levels 272, with parkin knockout mice showing increased DJ1 protein levels upon proteasomal inhibition 273. The loss of parkin (pdr-1 in our case) itself may be sufficient to cause proteasomal impairment from increased oxidative stress and abnormal accumulation of misfolded proteins. Thus, compared to the djr-1.1 mutants, the amelioration of metal toxicity in pdr-1 mutants may be due to increased expression of djr-1.1 in these animals.

While manganism is distinctive from PD in terms of the initial site of metal accumulation and toxicity (globus pallidus), both medical conditions implicate enhanced oxidative damage. In the absence of genetic alterations, Mn itself can cause mitochondrial damage by inhibiting complex I of the electron transport chain (ETC) and oxidative phosphorylation 158. Mn can also increase isoprostane (lipid peroxidation marker) generation and decrease ATP levels in a dose-dependent manner, resulting in increased neurodegeneration 263. The increased intraworm Mn concentrations may also influence iron (Fe) concentrations, another heavy metal that competes with Mn for transport via DMT1 and the transferrin receptor (TfR) 274. Furthermore, Fe has been implicated in PD by promoting oxidative damage via the Fenton reaction or altering oxidative response pathways $^{186, 217}$. Mn has also been shown to exacerbate DA oxidation to produce damaging, reactive DA intermediates $^{214, 275}$. The combination of Mn’s own oxidative potential and enhancement of DA oxidation, represents a plausible mechanism for its selectivity towards DAergic neurodegeneration, and it has been previously corroborated in C. elegans 260.

The marked increase in baseline RONS induction in the pdr-1 mutants was striking; however, this is not surprising, as parkin’s significant role in mediating
mitophagy warrants impaired mitochondrial integrity in its absence. The similarly elevated basal RONS levels in the *djr-1.1* mutants do not quite reach the level of the *pdr-1* mutants. As noted earlier, several studies have affirmed DJ1’s role as an oxidative stress sensor, indicating that loss of DJ1 would inherently result in an increased RONS production. In the context of this particular assay in *C. elegans*, Mn treatment in WT animals does not seem to dramatically increase DCF fluorescence over time (data not shown). Thus, we hypothesize that the inherently enhanced RONS induction in *pdr-1* and *djr-1.1* mutants reflects a ceiling effect that limits further exacerbation upon acute Mn exposure. Given its role in recruiting parkin to damaged mitochondria, it was somewhat unexpected that *pink-1* mutants only showed a slightly enhanced RONS induction compared to WT worms. However, the presence of DJ1 in *Drosophila* is able to rescue mitochondrial deficits in the background of *pink1*, but not *parkin* loss. This could account for the lack of an oxidative stress phenotype in the *pink-1* mutants, as well as the fact that these mutants did not take up as much Mn as the *pdr-1* and *djr-1.1* mutants.

While a trend was apparent towards a dose-dependent effect of Mn on GSH depletion in WT animals, the deletion mutants show no significant change with treatment. In particular, the baseline reduction in GSH levels in all deletion mutants suggests an inherently impaired ability to adapt to stressful stimuli, such as acute Mn exposure. This GSH reduction may also relate to the inherently high levels of RONS production in *pdr-1* mutants, as they show the lowest basal total GSH levels. Moreover, it has been shown that knocking down *pink1* in human neurons results in GSH reduction. Similarly, DJ1 expression promotes upregulation of glutathione synthesis, which
corresponds with the finding in djr-1.1 mutants, showing decreased GSH levels. Taken together, our data suggest a possible mechanism of neurotoxicity through compromised clearance of Mn-damaged mitochondria due to the loss of an intact Parkin/PINK1/DJ1 pathway, resulting in heightened RONS production that either cannot be inherently combated due to basal GSH deficiencies in the mutants, or is resulting in GSH consumption.

The observed increase in RONS induction and basal GSH depletion in mutants, showing enhanced Mn accumulation (pdr-1 and djr-1.1) warranted further examination into whether these animals also have alterations in skn-1 expression, the worm orthologue for $nrf2$. Nuclear factor erythroid 2-related factor 2, or Nrf2, is a transcription factor that promotes the upregulation of antioxidant genes upon oxidative-stress-induced translocation from the cytoplasm to the nucleus $^{278, 279}$. Previous work has found skn-1 mutants to be vulnerable to oxidative stress 280. While not significant, pdr-1 mutants showed a trend for increased skn-1 mRNA expression, which was consistent with increased Nrf2 activity found in an induced pluripotent stem cell (iPSC) study in patients harboring parkin mutations 281. Moreover, contrary to DJ1 acting as an Nrf2 stabilizer 106, we found significantly increased skn-1 mRNA expression in the djr-1.1 mutants. While we did not expect this increase, there may be a compensatory mechanism in these animals to counteract the basal GSH depletion that would otherwise protect against RONS production by upregulating skn-1-mediated antioxidant gene transcription.

Although α-Syn is known to be involved in the pathogenesis of PD, its role in both neuroprotection and neurodegeneration is controversial. Overexpression of α-Syn, as
well as its mutated forms (A30P, E46K, A53T), has been reported to be neurotoxic, while WT α-Syn has been implicated to be neuroprotective 109, 282, 283. α-Syn is a neuronal protein in vertebrates that is ubiquitously expressed at high levels in all brain regions 284, 285, but it is not expressed in \textit{C. elegans}. Therefore, worms expressing human WT α-Syn were utilized to address the role of α-Syn in the mutated background of \textit{pdr-1}, \textit{pink-1} and \textit{djr-1.1} with respect to Mn homeostasis, oxidative stress and DAergic neurodegeneration.

There is increasing evidence that α-Syn interacts with metal ions, thereby affecting their homeostasis. Initial studies of the potential to bind metals came from the ability of certain metals to catalyze α-Syn aggregation 286. Overall, two major types of interactions between metals and α-Syn have been reported. In addition to non-specific sites of electrostatic interactions, the C-terminus contains a 119DPDNEA motif binding site, suggesting that metal binding is driven by both electrostatic interactions and the residual structure of the α-Syn C-terminus. The C-terminal low-affinity sites have been reported to interact with different metal ions, with copper (Cu) and Fe most intensively studied 287, 288. Although the majority of metal ions interact with α-Syn with low affinity, the protein possesses high affinity to Cu2+ and Fe3+ at the N-terminal region. Modifications by redox-active metal ions may be relevant for the aggregation properties of α-Syn 289, 290. A co-incubation of α-Syn with Mn2+ has been reported to induce partial folding of the protein and serve as an effective promoter of α-Syn aggregation 254.

In addition to its metal binding capacity, the role of α-Syn as a cellular ferrireductase has been recently identified, providing further evidence towards the multiple roles of α-Syn in metal homeostasis 291. One very important outcome of the
present work is the novel role of α-Syn in altering Mn accumulation in the background of mutated pdr-1 and djr-1.1 worms, which may be partially due to an endogenous metal binding capacity. Even as α-Syn was only expressed in the DAergic neurons of the worms, the global alterations in Mn homeostasis were drastic; secretion of α-Syn into other regions cannot be excluded292,293. In fact, an environmental toxin (i.e. rotenone) has been shown to promote the release of α-Syn from enteric neurons294.

In terms of the role of α-Syn in modulating oxidative stress responses, the loss of pdr-1 or djr-1.1 in α-Syn-expressing worms resulted in reduced Mn-induced RONS production, compared to worms containing the genetic deletion alone. This effect was due to the reduced Mn accumulation in the presence of α-Syn in both pdr-1 and djr-1.1 deletion backgrounds. Additionally, attenuated oxidative stress, in accordance with the neuroprotective role of α-Syn, has been shown in cells expressing WT α-Syn, where protection against rotenone and maneb toxicity was conferred by preservation of mitochondrial function109. Additionally, WT α-Syn-expressing cells also showed the ability to attenuate decreased intracellular GSH levels upon serum deprivation295. An overexpression of α-Syn has been reported to increase the activity of superoxide dismutase (SOD), resulting in reduced oxidative stress296,297. The results in the current study support the literature in finding a neuroprotective role of wildtype α-Syn against oxidative stress.

The second important outcome of the current study is the role of α-Syn as being either neuroprotective or neurotoxic in the background of certain genes. While the expression of α-Syn significantly attenuated the DAergic neurodegeneration in WT worms and pdr-1 mutants, both basally and following acute Mn treatment, this effect
could not be observed in the *djr-1.1* deletion mutants. Analyzing the SNCA mRNA expression and α-Syn protein level revealed that this effect may be due to differential expression levels of α-Syn. The expression is slightly lower (not significant from WT) basally in the *pdr-1* mutants, consistent with clinical findings that patients with *parkin* mutations do not typically show α-Syn Lewy body deposition \(^2^{98,99}\). However, α-Syn mRNA was upregulated by three-fold in the *djr-1.1* mutants.

These differential expression levels of α-Syn might affect neurotransmitter release, since one function of α-Syn is the modulation of the dopamine transporter (DAT). This transporter (DAT-1 in *C. elegans*) is involved in synaptic neurotransmitter clearance, and especially responsible for DA reuptake to remove excessive extracellular DA concentrations \(^3^{00-302}\). Inhibition of DAT leads to high extracellular DA levels \(^3^{03,304}\). In *C. elegans*, we have already shown that upon Mn exposure, loss of *dat-1* is detrimental to worm survival, with extracellular DA exacerbating Mn-induced oxidative stress, lifespan reduction and DAergic neurodegeneration \(^2^{60}\). Moreover, previous observations in α-Syn-overexpressing cells show that increased α-Syn levels induce a dose-dependent reduction of DAT function, as hippocampal and DAergic neurons expressing two- to threefold WT α-Syn above normal levels (similar to the *djr-1.1* mutants in this study) show impaired neurotransmitter release \(^3^{05,306}\). Remarkably, in the present study, *pdr-1* mutants showed lower basal α-Syn levels and inherently higher *dat-1* mRNA levels, corresponding to the reduced DAergic neurodegeneration, thus suggesting a neuroprotective role for α-Syn that implicates increased extrasynaptic DA clearance. While *pdr-1* mutants exposed to Mn showed reduced α-Syn protein levels and increased *dat-1* mRNA levels (not significant from WT), Mn treatment did not
attenuate the DAergic neurodegeneration seen in untreated α-Syn-containing pdr-1 mutants. α-Syn in WT worms and pink-1 mutants showed a similar neuroprotective effect. A study in Drosophila pointed out the synergistic effect of expression of α-Syn and pink1, allowing for enhanced protection and increased survival 307.

In contrast to the pdr-1 mutants, the djr-1.1 mutants containing α-Syn showed a three-fold upregulation of α-Syn mRNA and downregulation of dat-1 mRNA, suggesting reduced synaptic DA clearance. However, these animals did not show an α-Syn-induced attenuating effect on DAergic neurodegeneration. Mn treatment resulted in increased α-Syn expression, consistent with observations that iron is modulating α-Syn at the transcriptional level 308. While dat-1 mRNA levels remained reduced, they were indistinguishable from the untreated djr-1.1 worms. The DAergic neurodegeneration was also indistinguishable from the untreated djr-1.1 animals containing α-Syn. Interestingly, the djr-1.1 mutants containing α-Syn showed the same level of neurodegeneration as the djr-1.1 deletion mutants alone, yet they showed less Mn accumulation; this implicates a more severe phenotype in the α-Syn-containing worms, as it took less Mn accumulation to produce the same level of DAergic neurodegeneration. The contrast in SNCA mRNA expression between pdr-1 and djr-1.1 mutants could be explained by post-transcriptional mechanisms that are regulated differentially by the two genes. Another possible explanation is promoter competition, as α-Syn is sharing the dat-1 promoter, but this has yet to be elucidated.
Conclusions

The genetically amenable *C. elegans* model system was utilized to examine the neuroprotective or neurotoxic role of α-Syn in mediating Mn neurotoxicity in the background of loss in the PD-associated genes *pdr-1*, *pink-1* and *djr-1.1*. For the first time, the current study provides evidence for a neuroprotective role of α-Syn against Mn accumulation and Mn-induced oxidative stress in the background of *pdr-1* and *djr-1.1* loss. However, its neuroprotective role may be dependent upon its expression level, as increased levels in the *djr-1.1* mutants were associated with increased DAergic neurodegeneration. These findings also support the role of extracellular DA in exacerbating Mn neurotoxicity, with decreased *dat-1* levels promoting increased DAergic neurodegeneration in the *djr-1.1* mutants. Collectively, the findings presented in this chapter support the overarching hypothesis that the loss of genes associated with early-onset PD, namely *pdr-1* and *djr-1* in *C. elegans*, results in increased susceptibility to Mn toxicity.
CHAPTER III

LOSS OF PDR-1/PARKIN INFLUENCES MANGANESE HOMEOPOSTASIS THROUGH ALTERED FERROPORTIN EXPRESSION IN C. ELEGANS

Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disorder, with a typical age of onset around 60 years of age\(^\text{121}\). This debilitating disease is characterized by selective dopaminergic (DAergic) cell loss in the substantia nigra pars compacta (SNpc) region of the brain. Hallmark symptoms of PD include bradykinesia, rigidity, tremors and postural instability that are often preceded by emotional instability and cognitive dysfunction. Unfortunately, PD is a progressive and irreversible condition\(^\text{1}\). Current treatments do not target the molecular origins of PD, warranting further examination into the mechanisms behind its pathophysiology.

Though PD is mostly idiopathic in its etiology, mutations in several genes have been connected to the disease\(^\text{1}\). For example, homozygous mutations in the PARK2/parkin gene are responsible for nearly 50% of an autosomal recessive, early-onset form of PD\(^\text{74}\). This gene encodes for an E3 ubiquitin ligase involved in the ubiquitin proteasome system (UPS) that targets substrates for degradation. Mutations in this gene result in impaired ligase activity and substrate binding that can lead to increased protein aggregation\(^\text{78}\). Parkin knockout animal models show a variety of PD-associated phenotypes, including hypokinetic deficits, DAergic cell loss and increased extracellular dopamine (DA) in the striatum\(^\text{79, 247}\). Parkin has also been more recently
identified as a key regulator of mitophagy, an intracellular autophagic process designed to eliminate damaged mitochondria from the cell35.

Despite the known genetic associations, familial cases often present with heterogeneity in their age-of-onset and symptomatology, in addition to nearly 90\% of all PD cases manifesting without genetic disturbances310. The idiopathic component of the disease suggests a contribution of environmental risk factors in the development of PD. One such factor is the heavy metal manganese (Mn), an essential trace element found in many food sources consumed daily by humans. Mn serves as a necessary cofactor for enzymes involved in several critical processes, including reproduction, metabolism, development, and antioxidant responses138. While deficiency is a rare concern, the essentiality of Mn is mirrored by its neurotoxicity upon overexposure. Mn poisoning, or manganism, typically occurs from occupational exposures in industrial settings, such as in welding, where Mn-containing fumes and/or products are abundant196,252. Mn is also found as an antiknock agent methylcyclopentadienyl manganese tricarbonyl (MMT) in gasoline, but limited studies currently exist on the impact of Mn release from combustion on general human health311,312. Mn is also found as a component in pesticides, making surface runoff from these agricultural uses an additional source of overexposure121. Moreover, Mn toxicity can also affect other susceptible populations, including ill neonates receiving TPN that is supplemented with a trace element solution containing Mn138. Another population at risk of Mn poisoning includes patients suffering from hepatic encephalopathy and/or liver failure, as Mn is excreted from the body through the biliary system183,313. On the other hand, individuals with iron (Fe) deficiency (e.g., iron deficiency anemia), a highly prevalent nutritional condition, are at risk for
increased Mn body burdens. As Mn shares similar transport mechanisms with Fe, higher Mn levels are often seen in conditions of low Fe levels314.

Tight regulation through an intricate system of transport mechanisms helps maintain proper Mn homeostasis in cells. The divalent metal transporter 1 (DMT1) represents the primary mode of divalent Mn import132. However, Mn efflux remains less understood than Mn import. We previously identified ferroportin (FPN), a well-known iron (Fe) exporter, as facilitating Mn export in cells and mice173. We have previously identified and characterized components of the Mn transport system in the \textit{Caenorhabditis elegans} (\textit{C. elegans}) model system. This nematode provides an attractive, alternative system that has a rapid life cycle, short lifespan, and large brood size. Additionally, the well-characterized genome allows for the utilization of various genetic mutants for studies. This nematode also conserves all necessary components of a fully functional DAergic system, allowing for the study of the effects of PD-associated genetic loss on the DAergic system. Our previous studies have identified SMF-1, SMF-2 and SMF-3 as the \textit{C. elegans} homologs for DMT1, with SMF3 acting as the most DMT1-like homolog in its necessity to regulate Mn uptake241. Thus far, these proteins are the only known Mn importers in the worm. Furthermore, the worm contains 3 homologs for FPN: FPN-1.1, FPN-1.2 and FPN-1.3315. As of now, FPN-1.1 is the only known protein that conserves Fe efflux in \textit{C. elegans}242.

The overlap in sites of damage and similar symptomatology between manganism and Parkinsonism has warranted investigations into potential gene-environment interactions. For example, parkin has been shown to selectively protect against Mn-induced DAergic cell death \textit{in vitro}221, while rats exposed to Mn-containing welding
fumes show increased Parkin protein levels. Our previous study using C. elegans found significantly enhanced Mn accumulation in pdr-1 (parkin homolog) knockout worms compared to WT worms. With the aforementioned relationships between PD-associated genes and Mn toxicity, we hypothesized that this enhancement is due to an alteration in Mn homeostasis, at the level of transport, in the background of pdr-1 loss. In the present study, while no significant change in mRNA expression of importers was seen, we found a downregulation of fpn-1.1 mRNA. Upon overexpression of this exporter in pdr-1 mutants, we found decreased metal levels that were associated with improved survival and DA-dependent behavior. Together, our results provide further support for altered metal homeostasis as a component of the pathophysiology seen in Parkinsonism.

Materials & Methods

Plasmid constructs – Full length wildtype (WT) fpn-1.1 with C-terminal FLAG tag was PCR amplified using primers 5′-GGGGACAAGTTTGTACAAAAAAGCAGGCTACATGGCTTGGTTATCCGGAAAAG-3′ and 5′-GGGGACCACTTTGTACAAGAAAGCTGGGTTTCACTTGTCATCGTCGTCCTTGTAGTCTTTCAAAAGTTGGCGAATCCAAC-3′ from cDNA library which was converted from total RNAs isolated from N2 worms (see below). The plasmid was created with Gateway recombinational cloning (Invitrogen). The above PCR product was initially recombined with the pDONR221 vector to create the pENTRY clone. Next, the fpn-1.1 pENTRY construct was recombined into pDEST-sur-5 vector, under the promoter of the acetoacetyl-coenzyme A synthetase (sur-5) gene. This plasmid was then used to create transgenic worms.
C. elegans Strains and Strain Construction – C. elegans strains were handled and maintained at 20°C as previously described. Strains used were: N2, wildtype (*Caenorhabditis* Genetics Center, CGC) and VC1024, *pdr-1*(gk448) III (CGC). The MAB326 strain was created by microinjecting *P*~sur-5::fpn-1.1~ with pBCN27-R4R3 (*P*~rpl-26::PuroR, Addgene) and *P*~myo-3::mCherry~ (a gift from Dr. David Miller) into VC1024 strain. Over three stable lines were generated and analyzed. Representative lines were selectively integrated by using gamma irradiation with an energy setting of 3600 rad.

Preparation of Manganese Chloride (*MnCl₂*) – 2M *MnCl₂* (> 99.995% purity) (Sigma-Aldrich) stock solutions were prepared in 85 mM NaCl. To prevent oxidation, fresh working solutions were prepared shortly before each experiment. The range of concentrations used in all experiments is based on Mn dose-response curves recently published by our laboratory.

Mn-Induced Treatments and Lethality Assay – 2500 synchronized L1 worms per group were acutely treated with *MnCl₂* (0-100 mM) in siliconized tubes for 30 minutes. Worms were then pelleted by centrifugation at 7000 rpm for 3 minutes and washed four times with 85 mM NaCl. 30-50 worms were then pre-counted and transferred to OP50-seeded NGM plates in triplicate and blinded. 48 hours post-treatment, the total number of surviving worms was scored as a percentage of the original plated worm count.

TaqMan Gene Expression Assay – Total RNA was isolated via the Trizol method. Briefly, following Mn treatment, 1 mL of Trizol (Life Technologies) was added to each
tube containing 20,000 worms resuspended in 100 µl 85 mM NaCl, followed by three cycles of freezing in liquid nitrogen and thawing at 37°C. 200 µL of chloroform was then added to each tube, followed by precipitation using isopropanol and washing with 75% ethanol. Following isolation, 1 µg total RNA was used for cDNA synthesis using the High Capacity cDNA Reverse Transcription Kit (Life Technologies), per manufacturer’s instructions. cDNA samples were stored at 4°C. Quantitative real-time PCR (BioRad CFX96) was conducted in duplicate wells using TaqMan Gene Expression Assay probes (Life Technologies) for each gene, using the gpd-3 (gapdh homolog) housekeeping gene for normalization after determining the fold difference using the comparative $2^{-\Delta\Delta C_t}$ method. The following probes were used: smf-1 (Assay ID: Ce02496635_g1); smf-2 (Assay ID: Ce02496634_g1); smf-3 (Assay ID: Ce02461545_g1); fpn-1.1 (Assay ID: Ce02414545_m1); and gpd-3 (Assay ID: Ce02616909_gH).

Metal Quantification – Total intraworm metal content was quantified using inductively coupled plasma mass spectrometry (ICP-MS), as previously described. Briefly, 50,000 synchronized L1 worms were acutely treated with MnCl$_2$. Worms were then pelleted, washed five times with 85 mM NaCl and re-suspended in 1 mL 85 mM NaCl supplemented with 1% protease inhibitor. After sonication, an aliquot was taken for protein normalization using the bicinchoninic acid (BCA) assay kit (Thermo Scientific). Subsequently, the suspension was mixed again, evaporated, and incubated with the ashing mixture (65%HNO$_3$/30%H$_2$O$_2$ (1/1) (both Merck)) at 95 °C for at least 12 h. After dilution of the ash with bidistilled water, metal levels were determined by ICP-MS/MS.
Relative Mitochondrial DNA Copy Number Quantification – Relative mitochondrial DNA copy number was quantified using qPCR methods as previously described317, with slight modifications. Briefly, 1,000 synchronized L1 worms were treated with MnCl\(_2\) for 30 minutes, following by several washes. Total genomic DNA was then isolated using a 1X PCR buffer containing 0.1% Proteinase K, and subjected to the following lysis protocol in a thermal cycler (BioRad T100): 65°C for 90 minutes, 95°C for 15 minutes, and then hold at 4°C. Following lysis, DNA was diluted to 3 ng/µl, and real time PCR (BioRad CFX96) using SYBR Green (BioRad) was performed in triplicate with the following primers: \textit{nd-1} for mtDNA (forward primer sequence: 5’-AGCGTCATTATTGGGAAGAAGAC-3’; reverse primer sequence: 5’-AAGCTTGTGCTAATCCGATAATGT-3’) and \textit{cox-4} for nuclear DNA (forward primer sequence: 5’-GCCGACTGGAAGAACTTGTC-3’; reverse primer sequence: 5’-GCGGAGATCACC TTCCAGTA-3’). The PCR reaction consisted of: 2µL of template DNA, 1µL each of mtDNA and nucDNA primer pairs (400nM final concentration each), 12.5µL SYBR Green PCR Master Mix and 8.5µL H\textsubscript{2}O. The following protocol was used: 50°C for 2 minutes, 95°C for 10 minutes, 40 cycles of 95°C for 15 seconds and 62°C for 60 seconds. The mitochondrial DNA content relative to nuclear DNA was calculated using the following equations: \(\Delta C_T = (\text{nucDNA } C_T - \text{mtDNA } C_T)\), where relative mitochondrial DNA content = \(2 \times 2^{\Delta C_T}\).

Glutathione Quantification – Total intracellular glutathione levels (reduced and oxidized GSH) have been determined using the “enzymatic recycling assay”, as previously described257. Briefly, whole worm extracts were prepared out of 40,000 L1 worms
acutely exposed to MnCl₂. This was followed by washes with 85 mM NaCl and sonication of the pellet in 0.12 mL ice-cold extraction buffer (1% Triton X-100, 0.6% sulfosalicylic acid) and 1% protease inhibitor in KPE buffer (0.1 M potassium phosphate buffer, 5 mM EDTA). After centrifugation at 10,000 rpm for 10 minutes at 4°C, the supernatant was collected, with an aliquot reserved for protein normalization using the BCA assay. Total intracellular GSH was quantified by measuring the change in absorbance per minute at 412 nm by a microplate reader (FLUOstar Optima microplate reader, BMG Labtechnologies) after reduction of 5,5'-dithio-2-nitrobenzoic acid (DTNB, Sigma-Aldrich). Hydrogen peroxide was used as a positive control.

Basal Slowing Response Assay – This assay of dopaminergic integrity was performed as previously described²²⁸, with slight modifications. Briefly, 2500 synchronized L1 worms were acutely treated in siliconized tubes with MnCl₂ for 30 minutes. Following washes with 85 mM NaCl, treated worms were transferred to seeded NGM plates. 48 hours after treatment, 60 mm NGM plates with seeded with bacteria spread in a ring (inner diameter of ~1 cm and an outer diameter of ~3.5 cm) in the center of the plate. Two seeded and two unseeded plates per group were kept at 37°C overnight, and allowed to cool to room temperature before use. Once Mn-treated animals reached the young adult stage, animals were washed at least two times with S basal buffer and then transferred to the central clear zone of the ring-shaped bacterial lawn (5-10 worms per plate) in a drop of S basal buffer that was delicately absorbed from the plate using a Kimwipe. After a five-minute acclimation period, the number of body bends in a 20-second interval was scored for each worm on the plate. Data are presented as the
change (Δ) in body bends per 20-second interval between worms transferred to unseeded plates and those with bacterial rings. Worms lacking cat-2 (the homolog for tyrosine hydroxylase) were used as a positive control, as these worms are impaired in bacterial mechanosensation228. General locomotion was assessed using the number of body bends/20 seconds of the group transferred to unseeded plates.

Statistics – Dose-response lethality curves and all histograms were generated using GraphPad Prism (GraphPad Software Inc.). A sigmoidal dose-response model with a top constraint at 100\% was used to draw the lethality curves and determine the respective LD\textsubscript{50} values, followed by a one-way ANOVA with a Dunnett post-hoc test to compare all strains to their respective control strains. Two-way ANOVAs were performed on TaqMan gene expression, metal content, total GSH, relative mtDNA copy number and basal slowing response data, followed by Bonferroni’s multiple comparison post-hoc tests.

Results

\textit{pdr-1} mutants show alterations in mRNA expression of Mn exporter-, but not importer-related genes – We previously reported a statistically significant increase in Mn accumulation in \textit{pdr-1} mutants vs. WT worms246. To test whether this enhancement was due to a change in transcription of Mn importer and/or exporter genes, we performed quantitative reverse transcription PCR (qRT-PCR) to examine smf-1,2,3 (\textbf{Fig 10A-C}) and \textit{fpn-1.1} gene expression (\textbf{Fig 10D}), respectively, following acute Mn exposure.
Figure 10. *pdr-1* mutants show alterations in mRNA expression of Mn exporter, but not importer, genes. (A-D) *smf-1,2,3* and *fpn-1.1* mRNA expression after an acute, 30 min treatment of L1 worms with 0, 2.5 and 5 mM MnCl$_2$. Relative gene expression was determined by qRT-PCR. (A) *smf-1* mRNA expression in N2 (WT) and *pdr-1* KO animals. (B) *smf-2* mRNA expression in N2 (WT) and *pdr-1* KO animals. (C) *smf-3* mRNA expression in N2 (WT) and *pdr-1* KO animals. (D) *fpn-1.1* mRNA expression in N2 (WT) and *pdr-1* KO animals. (A-D) Data are expressed as mean values + SEM of at least five independent experiments in duplicates normalized to the untreated wildtype and relative to *gpd3* mRNA. Statistical analysis by two-way ANOVA: (A) interaction, ns; genotype, ns; concentration, ns; (B) interaction, ns; genotype, ns; concentration, ns; (C) interaction, ns; genotype, ns; concentration, ns; (D) interaction, ns (trend level, p=0.0639); genotype, p<0.0001; concentration, ns. *p < 0.05, ***p < 0.001 vs. respective wildtype worms.
Two-way ANOVA analysis showed no overall effect of Mn treatment on transcription of any of the genes tested. However, while pdr-1 mutants showed no significant changes in smf-1,2,3 (the importers) mRNA expression (Fig 10A-C), a significant genotype difference (p<0.0001) was noted in fpn-1.1 (the exporter) between pdr-1 mutants and WT animals. Post-hoc analysis revealed a significant fpn-1.1 downregulation at 0 and 2.5 mM MnCl₂ (Fig 10D).

Overexpression of fpn-1.1 in pdr-1 mutants rescues Mn-induced lethality – In addition to enhanced Mn accumulation, pdr-1 mutants showed a leftward shift in the Mn dose-response survival curve, with WT worms exhibiting a LD₅₀ of 10.43 mM. To determine whether downregulation of fpn-1.1 may have played a role in exacerbating Mn-induced lethality of pdr-1 mutants, we overexpressed fpn-1.1 in the pdr-1 mutant background. Upon Mn exposure, pdr-1 mutants overexpressing fpn-1.1 (pdr-1 KO; fpn-1.1 OVR) exhibited a rightward shift in the dose-response curve compared to pdr-1 mutants alone (Fig 11A). The LD₅₀ of pdr-1 KO; fpn-1.1 OVR animals (10.84 mM) relatively normalized to previously published WT levels, while pdr-1 mutants alone show a LD₅₀ of 7.416 mM (Fig 11B). Two-way ANOVA analysis showed a significant interaction effect (p=0.0064) between both genotype and treatment (p<0.0001).

Overexpression of fpn-1.1 in pdr-1 mutants decreases levels of highly pro-oxidant metals – Upon noting the improved survival in pdr-1 KO; fpn-1.1 OVR animals, we
Figure 11. Overexpression of *fpn-1.1* in *pdr-1* mutants rescues Mn-induced lethality. (A,B) Dose-response survival curves following acute Mn exposure. All values were compared to untreated worms set to 100% survival and plotted against the logarithmic scale of the used Mn concentrations. (A) *pdr-1* KO animals and *pdr-1* mutants overexpressing *fpn-1.1* (pdr-1 KO; *fpn*-*1.1* OVR) were treated at the L1 stage for 30 min with increasing MnCl$_2$ concentrations. Dashed curve represents the typical WT survival curve as previously published. (B) The respective LD$_{50}$ concentrations (mM MnCl$_2$) for both genotypes. Data are expressed as mean values ± SEM from at least five independent experiments. Statistical analysis by two-way ANOVA: interaction, p=0.0064; genotype, p<0.0001; concentration, p<0.0001.
hypothesized that this attenuation in Mn-induced toxicity is associated with a decrease in redox active metal accumulation. Using inductively coupled plasma mass spectrometry (ICP-MS), we measured intraworm concentrations of various metals, including Mn, iron (Fe), zinc (Zn) and copper (Cu) following acute Mn exposure. To our surprise, Mn levels remained relatively similar between strains, though two-way ANOVA analysis revealed a significant treatment effect (Fig 12A, p=0.0165). However, endogenous Fe levels were significantly decreased in pdr-1 KO; fpn-1.1 OVR animals compared to pdr-1 KOs alone (Fig 12B, p=0.0092), though further significance was not reached at the post-hoc level. No significant changes were seen in Zn levels (Fig 12C). However, similar to Fe, Cu levels were significantly decreased in pdr-1 KO; fpn-1.1 OVR animals compared to pdr-1 KOs (Fig 12D, p=0.0256), with no post-hoc level differences. In summary, Mn levels stayed relatively the same, while Fe and Cu were both significantly decreased in pdr-1 KO; fpn-1.1 OVR animals. These results indicate that the improved survival is probably due to decreased levels of Fe and Cu, and suggests that fpn-1.1 may prefer Fe and Cu as substrates over Mn.

Overexpression of fpn-1.1 in pdr-1 mutants improves mitochondrial integrity and antioxidant response – Increased Mn levels in pdr-1 KOs (vs. WT animals) have been noted concurrently with significantly increased basal levels of RONS and depleted basal levels of total glutathione (GSH), suggesting an overall exacerbated environment of oxidative stress in pdr-1 KO animals. Therefore, we next sought to determine whether the significant decrease in Fe and Cu levels (Fig 12) and improvement in survival of pdr-1 KO;fpn-1.1 OVR animals (Fig 11A) were associated with improved defence
Figure 12. Overexpression of *fpn-1.1* in *pdr-1* mutants decreases levels of highly pro-oxidant metals. (A-D) Intraworm metal concentrations following acute, 30 min MnCl₂ treatment (0, 2.5 and 5 mM) at the L1 stage, as quantified by ICP-MS/MS. (A) Mn content (µg Mn/mg protein) in *pdr-1* KO and *pdr-1* KO; *fpn-1.1* OVR animals. (B) Iron (Fe) content (µg Fe/mg protein) in *pdr-1* KO and *pdr-1* KO; *fpn-1.1* OVR animals. (C) Zinc (Zn) content (µg Zn/mg protein) in *pdr-1* KO and *pdr-1* KO; *fpn-1.1* OVR animals. (D) Copper (Cu) content (µg Cu/mg protein) in *pdr-1* KO and *pdr-1* KO; *fpn-1.1* OVR animals. (A-D) Data are expressed as mean values ± SEM from at least six independent experiments and normalized to total protein content. Statistical analysis by two-way ANOVA: (A) interaction, ns; genotype, ns; concentration, p=0.0165; (B) interaction, ns; genotype, p=0.0092; concentration, ns; (C) interaction, ns; genotype, ns; concentration, ns; (D) interaction, ns; genotype, p=0.0256; concentration, ns.
mechanisms against oxidative stress. This was investigated using two measures: relative mitochondrial DNA (mtDNA) copy number and total GSH levels. Alterations in mtDNA copy number have been associated with aging and degenerative processes318. Moreover, parkin has been shown to regulate mitochondrial turnover to maintain proper mitochondrial integrity35. Using a quantitative PCR (qPCR) technique, we found \textit{pdr}-1 KO animals had a significantly elevated mtDNA copy number relative to WT animals, whereas \textit{pdr}-1 KO;\textit{fpn}-1.1 OVR animals exhibited levels similar to WT animals (\textbf{Fig 13A}); two-way ANOVA analysis reveals a significant genotype effect (\(p=0.0116\)), though significance was not reached at the \textit{post-hoc} level. Moreover, we previously published the basal depletion of total GSH in \textit{pdr}-1 KOs compared to WT controls. Given the reversal of increased mtDNA copy number in \textit{pdr}-1 KO;\textit{fpn}-1.1 OVR animals, we examined whether there was a similar rescue of GSH depletion. While statistical significance wasn’t reached, there was a trend toward increased GSH levels in \textit{pdr}-1 KO;\textit{fpn}-1.1 OVR animals relative to \textit{pdr}-1 KOs (\textbf{Fig 13B}, \(p=0.09\)). In both measures, Mn treatment itself did not significantly affect the outcomes.

\textit{Overexpression of \textit{fpn}-1.1 in \textit{pdr}-1 mutants improves the DA-dependent basal slowing response} – Loss of \textit{parkin} is connected to PD-associated DAergic neurodegeneration, and we previously published similar results of \textit{pdr}-1 KOs showing increased DAergic neurodegeneration vs. WT worms with fluorescence microscopy246. Consequently, we investigated whether the visual effects of DAergic neurodegeneration persisted to alter a behavioral outcome of DAergic integrity. The basal slowing response is a DA-dependent behavior that affects the mechanosensation needed for proper food sensing.
Figure 13. Overexpression of fpn-1.1 in pdr-1 mutants improves mitochondrial integrity and antioxidant response. (A) Relative mitochondrial DNA (mtDNA) copy number in pdr-1 KO and pdr-1 KO; fpn-1.1 OVR animals following an acute, 30 min treatment with 0 and 5 mM MnCl₂. Relative gene expression was determined by qPCR. (B) Total glutathione (GSH) levels of pdr-1 KO and pdr-1 KO; fpn-1.1 OVR animals following an acute, 30 min treatment with 0 and 5 mM MnCl₂. (A) Relative mtDNA copy number is expressed as a ratio of nd-1 (mtDNA marker) to cox-4 (nuclear DNA marker). Data are expressed as mean values + SEM of at least five independent experiments in duplicates normalized to the untreated N2 wildtype values. (B) Data are expressed as mean values + SEM of at least five independent experiments in duplicates, normalized to total protein content and relative to untreated pdr-1 KO values. Statistical analysis by two-way ANOVA: (A) interaction, ns; genotype, p=0.0116; concentration, ns; (B) interaction, ns; genotype, ns (trend level, p=0.09); concentration, ns.
in *C. elegans*, as worms slow their movement when encountering a bacterial lawn. Worms lacking *cat-2*, the homolog for tyrosine hydroxylase, are defective in this response from the loss of dopamine synthesis and do not slow down\(^{228}\). Thus, the changes (Δ) in number of body bends between plates with and without bacteria reflect the integrity of DAergic neurons. Using this paradigm, *pdr-1* KO animals exhibited a significantly defective basal slowing response vs. WT animals (p<0.001) that was analogous to that of *cat-2* mutants (**Fig 14**). The *pdr-1* KO;*fpn-1.1* OVR animals showed a partial rescue of the response, without reaching statistical significance. However, in the presence of Mn treatment, *pdr-1* KO;*fpn-1.1* OVR fully restored the response to WT levels, with the changes (Δ) in number of body bends being significantly higher than *pdr-1* KOs alone (p<0.01). To ensure that these effects were not due to general locomotion differences, we compared the number of body bends per group on plates without bacterial lawns; there were no significant differences between all groups (Suppl. Fig. 1).

Discussion

The relationship between genetic mutations and the contribution of environmental risk factors in the development of PD has yet to be clearly defined. In the present study, the *C. elegans* model system was utilized to investigate alterations in Mn homeostasis and toxicity in animals lacking *pdr-1/parkin*, a genetic risk factor for PD. We previously published evidence that animals lacking *pdr-1* show high sensitivity to an acute Mn exposure, with decreased survival and significantly elevated Mn accumulation compared to WT animals\(^{246}\). The present study aimed to determine whether the
Figure 14. Overexpression of fpn-1.1 in pdr-1 mutants improves the DA-dependent basal slowing response. Behavioral data are expressed as the change (Δ) in body bends per 20 seconds between treated (5 mM MnCl$_2$) and untreated WT, pdr-1 KO and pdr-1 KO; fpn-1.1 OVR animals placed on plates without food vs. plates with food. Schematic shows the spectrum of change, with N2 wildtype animals possessing a higher change in body bends (i.e., a fully intact DAergic system) to cat-2 mutants possessing a smaller, almost negligible change in body bends (i.e., an impaired DAergic system). cat-2 KO animals were used as a positive control. Statistical analysis by two-way ANOVA: interaction, ns (trend level, p=0.0872); genotype, p<0.0001; concentration, ns. ***p<0.001 vs. untreated WT, *p<0.05 vs. pdr-1 KO.
Figure 15. Basic model summarizing the findings of Chapter 3. (A) Loss of pdr-1 results in increased Mn accumulation that is associated with downregulation of fpn-1.1 mRNA, increased ROS production, basally depleted GSH, elevated mtDNA copy number and deficits in the DA-dependent basal slowing response (BSR) vs. WT animals. (B) Upregulation of fpn-1.1 in pdr-1 KO animals ameliorates Mn-induced toxicity of pdr-1 KO’s, including slight elevation of GSH, mtDNA copy number and BSR normalization to WT levels, and decreased accumulation of Fe, Cu and Mn.
enhanced Mn concentrations were due to altered expression of Mn transporters in C. elegans to affect Mn homeostasis. Parkin's role in regulating metal homeostasis has only recently begun to be investigated. Previous in vitro evidence has shown that parkin can modulate levels of the 1B isoform of DMT1 through ubiquitination170. Moreover, Drosophila studies show that both pharmacological (BCS/BPD) or genetic (increased expression of the metal responsive transcription factor 1, MTF-1) chelation of redox-active metals decreases oxidative stress, improves reduced lifespan and normalizes metal concentrations in parkin mutant flies269,270. Therefore, parkin's regulation of metal homeostasis and its role as an E3 ligase raise the possibility of parkin-mediated regulation of Mn-responsive proteins. The C. elegans system represents an ideal model to study this possibility, as PDR-1 conserves its ligase activity236, and their genome contains less E3 ligases319 to minimize the possible compensatory mechanisms seen in vertebrate knockout models.

Contrary to in vitro evidence of parkin-mediated control of a DMT isoform, we observed no significant changes in expression of the smf genes, especially with smf-3 being the most DMT1-like homolog241. Instead, significant downregulation of fpn-1.1 was observed in pdr-1 KOs compared to WT animals. These findings suggest that the loss of pdr-1 in C. elegans results in increased Mn accumulation that may be from defective export, rather than from impaired uptake. Notably, we recently identified a novel role for SLC30A10 in Mn export that is associated with heightened risk for PD. However, no homologs for this protein are expressed in C. elegans177. Thus, for the present study, given the downregulation of fpn-1.1 mRNA in pdr-1 mutants, we investigated the effects of overexpressing the only known Mn exporter in C. elegans.
Mn uptake is modulated by a variety of proteins, including: DMT1, the transferrin receptor (TfR), the choline transporter, the citrate transporter, the magnesium transporter HIP14, the P-type transmembrane ATPase (ATP13A2), the solute carrier 39 family of zinc transporters, and calcium channels252. Among these, DMT1 has been given the most attention, as it is not only the primary mode of uptake, but is also associated with parkinsonism. Increased DMT1 expression has been found in the SNpc of PD patients, as well as in SNpc of MPTP mouse models217. Elevated DMT1 mRNA expression and DAergic neurotoxicity was also seen in rats exposed to Mn-containing welding fumes320. Moreover, specific polymorphisms in DMT1 have been found in a Chinese population suffering from PD218. These studies highlight altered metal homeostasis in the etiology of Parkinsonism. Interestingly, the overexpression of FPN in our \textit{pdr-1} mutants altered not only Mn, but Fe and Cu levels to a greater extent. We were not surprised to observe a treatment effect for Mn, as this was the only exogenous treatment administered to the nematodes. However, we did expect to see a greater decrease in Mn concentrations. It may be possible that currently unidentified Mn importers or exporters in \textit{C. elegans} may be compensating to prevent the expected rescue of Mn accumulation. For example, there may be additional exporters that share similarities with the newly established cell surface Mn exporter SLC30A10, which does not have any \textit{C. elegans} homologs. It is also possible that FPN’s affinity for Fe is greater than that of Mn, as the differential binding affinities have yet to be determined. Moreover, as FPN has not been shown to export Cu, the decrease in Cu levels may be a secondary effect of lowered intracellular Fe due to increased Fe efflux. Fe-deficiency
anemia has been associated with copper deficiencies, though the mechanism remains unknown321,322.

In addition to the well-characterized toxicity of Mn resulting in parkinsonian symptoms, enhanced iron accumulation in the SN is often seen in PD brains217,323, with pharmacological Fe chelation showing potential therapeutic value324,325. Moreover, Mn treatment has been recently shown to disrupt general metal homeostasis in WT \textit{C. elegans}, with excess Mn resulting in altered Fe and Cu levels326. Though the authors of this study used slightly higher Mn concentrations (10-30 mM) than the present study, this was most likely due to the use of older worms treated for 24 hours, rather than larval stage worms acutely treated for 30 minutes. However, as their lowest dose (10 mM) is within the range of the doses used in the present study, similar findings were seen with higher Mn concentrations (30 mM) corresponding with comparatively lower Fe and Cu levels overall326. The results in the present study provide further support of the interplay between metals, as exogenous Mn treatment results in the alteration of endogenous metal concentrations that may alter vital downstream processes. It is possible that the combined effects of decreased Fe and Cu levels, rather than the moderate to slight decrease in Mn levels, results in the amelioration of the \textit{pdr}-1 KO phenotypes (Fig 15).

Moreover, the recently discovered role of parkin as a mediator of mitophagy has introduced the potential significance of mitochondrial integrity in Parkinsonism327; loss of \textit{parkin} could result in the accumulation of defective mitochondria to increase cellular oxidative stress. This could explain the significant increase in relative mtDNA copy number in \textit{pdr}-1 KO animals as a measure that could equate with increased
mitochondrial mass in *pdr-1* KO; *fpn-1.1* OVR animals would then help to reverse this effect by decreasing metal-induced oxidative stress. Additionally, while the increase in the antioxidant GSH in *pdr-1* KO; *fpn-1.1* OVR animals vs. *pdr-1* KO animals is moderate, it reaches trend-level significance. This may represent an improvement in the overall handling oxidative stress. It has been previously shown that neurons treated with increasing Fe concentrations show depletion in GSH content\(^{330}\). This is similar to the elevation in GSH content of *pdr-1* KO; *fpn-1.1* OVR animals that also exhibit decreased Fe accumulation. However, we are limited in the present study, as we have been unsuccessful in using the microplate assay format to measure both GSSG and GSH. While *pdr-1* KO; *fpn-1.1* OVR and *pdr-1* KO animals show no difference in *gcs-1* (homolog for the glutamate-cysteine ligase responsible for catalysing GSH synthesis) mRNA expression (data not shown), future studies should be done to determine whether this change in GSH is due to more reduced vs. oxidized forms of GSH.
Finally, we previously reported that *pdr-1* KO animals show an exacerbation of DAergic neurodegeneration compared to WT animals\(^{246}\). Currently, conflicting findings exist on the effects of Mn on DAergic neurodegeneration in *C. elegans*\(^{260,326}\). However, this may be due to differences in treatment paradigms and doses. Additionally, fluorescence microscopy is a common technique to assess degeneration; however, microscopy for GFP visualization remains a mostly qualitative readout of cell death. Accordingly, we focused on an output parameter of an intact DAergic system by assaying a DA-dependent behavioural measure. The basal slowing response (BSR) is a well-known feeding response that requires DA and affects mechanosensation to properly recognize food sources (bacteria) in *C. elegans*\(^{228}\). Similar to our previous results, Mn treatment itself in WT animals did not result in a statistically significant decrease in BSR, though a slight decline was apparent. However, while *pdr-1* KOs show impairment in this response, the rescue of BSR deficits by *pdr-1* KO;*fpn-1.1* OVR animals normalizes to the WT response. These data suggest that the overexpression of FPN normalizes DAergic integrity in the background of *pdr-1* loss. The effect of Mn on BSR in *pdr-1* KO and *pdr-1* KO;*fpn-1.1* OVR animals is negligible. This may be due to the complete loss of *pdr-1* resulting in a “ceiling effect,” such that the addition of Mn exposure does not further exacerbate the basal differences. However, the BSR in *pdr-1* KO;*fpn-1.1* OVR animals fully normalizes to WT levels upon treatment.

Notably, we cannot relate the improvement in BSR to the improved survival of *pdr-1* KO;*fpn-1.1* OVR animals, as it has been previously reported that ablation of DAergic neurons in nematodes does not affect overall survival\(^{230}\). However, the relationship between metals and dopamine toxicity is well known. Dopamine itself is a
strong oxidant that can undergo an auto-oxidation process to produce highly damaging intermediates, which makes a strong argument for the vulnerability of DA-specific brain areas to toxins and other oxidants331. Mn has been shown to catalyse dopamine oxidation332, while Fe has been shown to specifically bind neuromelanin found in DAergic neurons333. Thus, the \textit{pdr-1 KO; fpn-1.1 OVR} animals may show improvement in the DA-dependent BSR due to the lower bioavailability of Mn, Fe and Cu (Fig 15) that would otherwise participate in directly enhancing DA oxidation and/or indirectly producing damaging free radicals in an already susceptible cell type.

Conclusions

In conclusion, the present study provides further support for altered metal homeostasis as a critical component of PD pathophysiology. Using the genetically tractable \textit{C. elegans} system, we show a novel role of \textit{pdr-1/parkin} in modulating metal homeostasis following an acute Mn exposure by influencing metal efflux. Though human mutations in FPN have not yet been associated with PD, our findings demonstrate the importance and specificity of PD genetics (e.g. loss of \textit{pdr-1/parkin}) in interacting with environmental factors to exacerbate physiological processes that may lead to cell death. Future studies should focus on potential therapeutic routes that help understand the interplay between \textit{pdr-1/parkin}-mediated mitochondrial dynamics and enhanced efflux of redox-active metals like Mn, Fe and Cu as a strategy against Mn-induced Parkinsonism.
In summary, the data presented in this thesis support the hypothesis that loss of function of early-onset PD disease genes, namely *pdr-1/parkin* and *djr-1.1/dj1*, results in increased vulnerability to Mn toxicity in *C. elegans*, as evidenced by enhanced Mn accumulation and oxidative stress in these backgrounds. Our findings further support the hypothesis that WT αS may have protective qualities, as its expression in the background of *pdr-1* and *djr-1.1* loss ameliorates Mn toxicity by reducing Mn levels and RONS production. Though WT αS rescues DAergic neurodegeneration in *pdr-1* KO animals that also exhibit increased *dat-1* mRNA, it does not in *djr-1.1* KO animals that show decreased *dat-1* mRNA. These findings indirectly support the role of extracellular dopamine in exacerbating Mn toxicity. Furthermore, our results show that *pdr-1* loss confers the highest vulnerability to Mn-induced lethality, concurrent with the highest Mn accumulation. We show evidence of decreased *fpn-1.1* mRNA expression in animals lacking *pdr-1*, with no change in expression of Mn importer genes, suggesting that Mn export, rather than import, is altered in these animals. Moreover, the overexpression of *fpn-1.1* in the background of *pdr-1* loss rescues toxic metal accumulation that concurrently improves mitochondrial and DAergic integrity.

An interesting phenomenon in Chapter 2 revolves around DAergic-specific expression of human αS driving global changes in Mn accumulation, considering we do not yet have the technical skills in quantifying metal content within neurons specifically.
One possibility for this finding is following the theory that the progressive nature of PD may be due to αS propagation from one brain region to another. The spread of αS was first identified in previous clinical studies, where patients suffering from PD received transplants of nigral embryonic DAergic neurons into their striatum. More than a decade after surgery, αS- and ubiquitin-containing Lewy bodies, as well as reduced immunostaining for DAT, were present in the grafted neurons. Researchers also believe that this phenomenon may help explain the selectivity of DAergic neurons in PD. as dopamine itself has been shown to enhance the formation of non-fibrillar αS oligomers in intracellular vesicles. Increased cystolic DA levels using L-DOPA treatment subsequently results in secretion of αS oligomers into the media. Moreover, inhibition of the autophagy/lysosome pathway results in increased intercellular transfer of αS from donor neurons expressing αS to recipient cells, which then exhibit enhanced apoptotic cell death. This is of particular interest in terms of Parkin's involvement in mitophagic processes that utilize this pathway, as well as its general role in protein clearance. In fact, a recent study provides evidence that mice lacking parkin show increased transfer of αS from the brain to the blood, with increased Parkin ubiquitination/activity aiding in αS clearance and turnover. Thus, the authors conclude that PD patients suffering from parkin mutations may not characteristically exhibit Lewy bodies due to the loss of αS sequestration through autophagic elimination.

The connection between environmental toxicants and αS aggregation has been well established. Uversky et al. first showed that Mn2+ could accelerate the rate of αS fibril formation, with a later study finding that αS selectively exacerbates Mn2+ (and
not Fe$^{2+}$)-induced cell death in DAergic cells expressing DAT339. More recent evidence
in primates has confirmed that Mn exposure can induce αS aggregation in neurons of
the frontal cortex213. However, the link between toxicants and transneuronal αS
transport has only recently been examined. For example, exposure to rotenone in mice
results in increased release of αS from enteric neurons into the surrounding media, with
a higher amount of αS found in exosomes. These studies also utilized co-cultures to
find that the rotenone-induced, released αS could be taken up into TH+ neurons and
retrogradely transported into the soma294. Collectively, such evidence indicates the
ability of αS to propagate from one cell to the other, though the mode of transport may
not be well understood yet.

Our findings of global Mn-induced changes that are modulated by DA-specific αS
expression may support this theory of αS propagation in C. elegans. In particular, the
protective effects of WT αS in reducing whole-worm Mn toxicity and accumulation could
be due to the spread of αS from DAergic neurons to neighboring cells to propagate its
metal-quenching qualities. While this has yet to be determined, studies have found
copper-and iron-binding sites, as well as its ability to alter Fe oxidation states$^{291, 340}$. As
these metal ions have been shown to share transport mechanisms and roles as
cofactors, it may be possible for αS to also bind Mn. Future studies should examine its
potential secretion in the context of a pdr-1 mutant background, as our studies do not
examine whether intracellular αS aggregation upon WT expression in this background is
altered. It is also important to note that our studies did not investigate the effects of the
aforementioned mutant forms of αS, and whether the opposite outcomes would be seen
(i.e., lack of a rescue of Mn accumulation and toxicity). Since αS is not endogenously expressed in *C. elegans* and has not been shown to be secreted in this system, however, a more likely possibility behind the global alterations may revolve around the direct control and influence of αS-expressing DAergic neurons on other cells. In fact, dopamine has been shown to act extrasynaptically in *C. elegans*; the DA receptors DOP-1 and DOP-3 are expressed on ventral motor cord neurons that are not postsynaptic to DAergic neurons341. Thus, I hypothesize that humoral DA secretions342 could result in the control of any cell expressing a DA receptor, potentially including neurons in the gut where Mn absorption is greatly influenced.

A major question left unanswered in Chapter 3 is how the loss of *pdr-1* in *C. elegans* results in altered *fpn-1.1* expression. As worms conserve PDR-1 ligase activity, one would expect that the loss of *pdr-1* would result in the lack of FPN degradation, if FPN were a direct target of PDR-1. While it would have been beneficial to test this idea using Western blot techniques to assess FPN protein expression, the lack of commercially available *C. elegans*-specific antibodies made this difficult. Regardless, qRT-PCR methods revealed the opposite effect of decreased *fpn-1.1* mRNA levels in *pdr-1* KO animals. Although it is possible that the difference in mRNA levels may not correspond with protein expression, one could hypothesize that the *fpn-1.1* downregulation may be an indirect effect of *pdr-1* loss. As most E3 ubiquitin ligases have several target substrates, it may be possible that one of Parkin’s targets is able to regulate FPN expression. The FPN system in *C. elegans* has not been extensively studied enough to fully understand how the exporters may be regulated in nematodes. In mammalian systems, however, some regulatory mechanisms have been investigated,
with the most prominent one being hepcidin, a peptide hormone. Hepcidin binds and inhibits FPN to control dietary iron absorption in mammals. However, the C. elegans genome does not contain any hepcidin-like genes.

There are other hepcidin-independent regulatory mechanisms to control FPN expression. These include the hypoxia-inducible factor 1 (HIF-1), a member of a transcription factor protein family that is stabilized under hypoxic conditions to promote upregulation of genes that foster survival in low-oxygen states. The C. elegans genome encodes a single homolog for HIF-1 (hif-1) that can modulate longevity in worms343. While evidence in C. elegans has found hif-1 to act as a negative regulator of ferritin (ftn-1 and ftn-2) transcription344, no studies have yet examined whether the HIF-1-mediated control of FPN is conserved in nematodes. Some studies have also connected the Alzheimer’s disease-associated amyloid precursor protein (APP) as another modifier of FPN function. Controversial findings suggest that APP may have ferroxidase activity345, 346, with recent evidence indicating that endogenous APP may help stabilize cell-surface expression of FPN346 to modulate iron export. The precise mechanism of the APP-FPN interaction, however, remains unclear. In C. elegans, it would be interesting to evaluate the expression of APL-1, the worm homolog of APP347, in the background of pdr-1 loss to determine whether altered APL-1 levels may be associated with FPN-1.1 downregulation; likewise, assessing pdr-1 expression in the background of apl-1 loss may also aid in further understanding this putative interaction.

Another potential intermediary of pdr-1-mediated fpn1 regulation is Nrf2, the master regulator of neuroprotective antioxidant transcriptional responses. Activation of this transcription factor has been show to upregulate fpn-1 mRNA in human and mice.
macrophages, with microarray analysis confirming FPN1 to be an Nrf2 target gene. skn-1 is the C. elegans homolog for the nrf2 gene. While we show a slight increase in skn-1 mRNA expression in pdr-1 KOs (Fig 7A) vs. WT animals, it remained statistically insignificant. Our studies do not address whether SKN-1 activation and/or activity itself is altered in the background of pdr-1 loss, which would provide a more mechanistic view at whether Nrf2-mediated regulation of FPN expression is conserved in C. elegans. Future studies should consider crossing worms containing a SKN-1 translational fusion reporter (SKN-1::GFP) with the pdr-1 KO and pdr-1 KO;fpn-1.1 OVR animals to assess nuclear translocation of SKN-1 as an indication of its activation. It may also be worthwhile to assess the transcription of SKN-1’s downstream targets, such as gst-4, in the background of pdr-1 KO and pdr-1 KO;fpn-1.1 OVR animals.

DJ-1 has been shown to stabilize Nrf2 by preventing association with its inhibitor protein Keap1106. If the loss of parkin results in decreased DJ-1, as seen in neurons272, loss of Nrf2 stabilization could then result in the decreased fpn-1.1 expression seen in pdr-1 KOs (Fig 10D). However, other evidence in neurons has found that activation of the Nrf2 pathway occurs in a DJ-1-independent manner348. Nonetheless, future studies should examine the potential role of Nrf2 in the Parkin-FPN relationship, as oxidative stress plays such a significant role in both Parkinsonism and metal dyshomeostasis. While the studies presented in this thesis do not identify what this intermediary may be, ongoing efforts include microarray analysis that may reveal new targets of pdr-1, which could subsequently regulate fpn-1.1 expression in C. elegans.

A recurring issue throughout the studies presented in this thesis is the lack of a direct effect of Mn on any of the outcomes tested. While Mn treatment shows a dose-
dependent effect on lethality and Mn accumulation in WT worms, most of the outcomes do not show significant differences between untreated and treated WT animals. This may be due to the treatment paradigm used, with the possibility that an acute, 30-minute treatment in L1 larval worms is not sufficient to cause significant changes. This may also be compounded by the fact that the extracts for most of the biochemical techniques presented were isolated directly after treatment. It would be interesting to determine whether a longer exposure time and/or longer time post-exposure for extract preparation would produce different phenotypic outcomes than what is presented.

Moreover, the thick cuticle barrier has also posed several technical problems, most notably, the necessity of administering high Mn concentrations (in the millimolar range) to produce any effects. While ICP-MS methodology has been extremely valuable in revealing variable intraworm metal accumulation, the lack of clear, quantitative methods to assess metal uptake itself has hindered full understanding of Mn homeostasis in pdr-1 KO animals. The LA-ICP-MS method at least provided confirmation that the metal levels revealed by ICP-MS did have any contributions from unwashed metals stuck to the outside cuticle (Fig 5E). However, this method still remains qualitative in nature, with ongoing efforts to determine how to quantitatively analyze these results. We have also attempted to optimize the cellular Fura-2 manganese extraction assay (CFMEA) established by our colleagues for C. elegans, but were unsuccessful. Future studies should consider radiolabeled substrate (or fluorescence) uptake assays to determine whether Mn transport dynamics are altered. Another interesting finding in Chapter III points to a much higher overall concentration of Mn in worms compared to Fe. Typically, the reverse is the case in other systems.
Though previously published findings from our laboratory using GFAAS show Fe to be at a higher level than Mn in WT worms, this may be due to differences in the methods used (ICP-MS/MS vs. GFAAS) and the resulting sensitivities. The GFAAS findings were also expressed as metal content per 1000 worms, which is both a significantly smaller sample size compared to the 50,000-worm samples we used for ICP-MS/MS, and lacks the accuracy of protein normalization. However, a potential explanation is the lack of a circulatory system in worms, as most of Fe in mammalian systems is primarily required for hemoglobin in red blood cells360.

Additionally, assessment of mitochondrial dynamics and oxidative stress proved to be difficult in \textit{C. elegans} during the course of this project. The use of the DCF dye in Chapter 2 to measure RONS production was optimized from previous techniques used in the laboratory237 to “pre-treat” worms with the dye before MnCl\textsubscript{2} exposure, in order to better catch the immediate effects of Mn treatment. While we were able to obtain robust readings of RONS production through this method, the use of this dye was based on its frequent use in the literature. However, this assay is not thorough in its detection abilities, as it cannot measure H\textsubscript{2}O\textsubscript{2}, along with the caveat of potential dye leakage that we may not have been aware of351. Future investigations using this dye in \textit{C. elegans} should consider fluorescence microscopy to visualize dye loading within worms. Additionally, the contribution of RONS specifically from the mitochondria vs. total cellular RONS is not distinguished using DCF. Future experiments in Mn-treated worms should consider the use of a tool like the MitoSOX dye, which is rapidly oxidized by superoxide in mitochondria, and not by other forms of RONS, and can be assessed by its fluorescence. Moreover, another technical issue we encountered in assessing
oxidative stress was through the optimization of the cellular GSH recycling assay. Unfortunately, we were unable to measure oxidized GSH (GSSG) from the worms, leaving the assay to only dictate total GSH levels. While this can still be considered a readout of antioxidant response, it would be beneficial to utilize a method like HPLC to measure both GSH and GSSG for a fuller understanding of increased oxidative stress.

We also attempted to assess mitochondrial bioenergetics using the Seahorse Biosciences Extracellular Flux Analyzer, which provides oxygen consumption rates following administration of various mitochondrial toxins. While the use of this machine to assess a variety of endpoints (e.g., basal respiration, ATP production, proton leakage) at once is attractive, the high costs associated with supplies and use of the equipment limited the amount of trials necessary to optimize this system for *C. elegans*. We attempted to vary the conditions of the Seahorse experimental paradigm from the original protocol for cells, but the injection times and concentrations of the mitochondrial toxins used (oligomycin, FCCP and rotenone), may not have been sufficient for the toxins to properly enter and accordingly affect the worms. Therefore, we could only rely on the basal respiration endpoint measured by the machine prior to the injection of mitochondrial toxins. Basal respiration was slightly decreased in *pdr-1* KO’s compared to WT worms, with the *pdr-1* KO;*fpn-1.1* OVR animals showing even more of a decrease (trend level, p=0.0738, Supplementary Figure 1). However, these changes were slight and not significant. Though the trend for a lack of rescue by *pdr-1* KO;*fpn-1.1* OVR animals is unexpected, we are not confident in these results truly reflecting the basal state of the worms, as this assay has not been used extensively in worms by other groups. However, if this were to be true, perhaps the rescue seen in *pdr-1* KO;*fpn-
1.1 OVR animals is independent of changes in mitochondrial respiration. Future experiments must fully optimize the drug concentrations and injection times of the Seahorse mitochondrial stress test in order to correctly assess the other parameters of mitochondrial bioenergetics.

Furthermore, the roles of Parkin and PINK1 as mediators of mitochondrial dynamics have not yet been extensively examined in *C. elegans*. This may be partially due to technical challenges with this model system. While we considered mtDNA copy number as a correlate of mitochondrial mass, we understand that this is not the most direct or comprehensive strategy in examining mitochondrial integrity. In terms of Parkin’s role in mitochondrial turnover, future experiments should consider adding a combination of techniques that assess both total mitochondrial mass, and the amount of that mass undergoing stress, thereby capturing the direct effects of *pdr-1* loss and Mn exposure on mitochondrial dynamics. For example, mutilabeling using the mitochondrial dye MitoTracker Green, which labels all mitochondria independent of the membrane potential, in combination with the dye MitoTracker Red CMXRos, which is dependent on the membrane potential, can provide a ratio of red to green representing changes in mitochondrial membrane potential that is normalized to any changes in mitochondrial abundance. This could be combined with the use of the TMRE (tetramethylrhodamine, ethyl ester) dye in worms, which only accumulates in active mitochondria, with damaged, depolarized mitochondria unable to take up the dye. Using a combination of these methods (via fluorescence microscopy and/or flow cytometry), in addition to the qPCR-based method of mtDNA detection, would paint a more accurate picture of direct changes in mitochondrial dynamics.
Lastly, an accurate model of PD should reflect the signature DAergic neurodegeneration associated with the disease. Consequently, previous members of the laboratory have published findings that Mn selectively induces DAergic neurodegeneration in WT *C. elegans*[^260]. However, I, along with other past and current members of the laboratory have not been able to reproduce these findings since that point, despite using the same treatment paradigm and imaging techniques. Interestingly, other groups have also struggled to reproduce the drastic degeneration seen in the published confocal fluorescent images. We attempted to formulate a new scoring method that considers all aspects of degeneration (shrunken soma, blebbing, etc) that may not have been considered previously, but still did not notice a drastic effect of Mn on DAergic neurons in WT animals (Figure 8). However, this may be even more indicative of Mn’s role as an environmental risk factor, with Mn accumulation, overall metal dyshomeostasis and oxidative stress preceding any overt degeneration. Though we cannot reproduce the GFP signal changes published by Benedetto and colleagues[^260], it is important to note that loss of the GFP signal in worms containing the *p_dat-1GFP* trasngene is not necessarily a true reflection of degeneration. Fluorescence microscopy remains a qualitative assessment, as GFP signal may be lost, while cell death may not have truly occurred. According to personal communications with various members of the *C. elegans* community, there is a consensus that accurate analysis of neurodegeneration outside of fluorescent visualization is lacking in this system. For this reason, the behavioral approach was viewed as an output parameter of DAergic system integrity. Another way to tackle this obstacle is to biochemically measure differences in dopamine levels. Ongoing efforts include the establishment of a liquid chromatography
mass spectrometry (LC-MS) method with our collaborators in Germany to measure worm DA levels for a more quantitative assessment of damage to the DAergic system.

In conclusion, these studies collectively support the role of impaired metal homeostasis as a consequence of genetic mutations associated with early-onset PD, as well as the “multiple-hit” model signifying the distinctive roles of genetic risk factors in increasing vulnerability to toxin-mediated cell death. Furthermore, these findings provide a foundation for future studies on the interplay between WT αS neuroprotection, pdr-1-mediated mitochondrial dynamics and enhanced metal efflux as therapeutic strategies against Mn-induced Parkinsonism.
Table 1. Conditions for ICP-MS/MS (Agilent 8800 ICP-QQQ)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>1550 W</td>
</tr>
<tr>
<td>Plasma gas</td>
<td>15 L/min</td>
</tr>
<tr>
<td>Carrier gas</td>
<td>1.0 L/min</td>
</tr>
<tr>
<td>Auxiliary gas</td>
<td>0.9 L/min</td>
</tr>
<tr>
<td>Scan mode</td>
<td>single quad</td>
</tr>
<tr>
<td>Q1</td>
<td>ion guide</td>
</tr>
<tr>
<td>Collision cell gas flow</td>
<td>He: 4.5 mL/min (purity: > 99.999 %)</td>
</tr>
<tr>
<td></td>
<td>H₂: 0.5 mL/min (purity: > 99.999 %)</td>
</tr>
<tr>
<td>Q2</td>
<td>55Mn, 103Rh (ISTD)</td>
</tr>
<tr>
<td>Integration Time</td>
<td>1.0 s</td>
</tr>
<tr>
<td>Replicates</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 2. Conditions for ICP-MS (ICAP Qc, Thermo Fisher Scientific)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>1550 W</td>
</tr>
<tr>
<td>Nebulizer Flow</td>
<td>780 mL/min</td>
</tr>
<tr>
<td>Cool Flow</td>
<td>14.0 L/min</td>
</tr>
<tr>
<td>Auxiliary Flow</td>
<td>500 mL/min</td>
</tr>
<tr>
<td>Measurement mode</td>
<td>KEDS</td>
</tr>
<tr>
<td>Cell gas flow</td>
<td>4.6 mL/min</td>
</tr>
</tbody>
</table>

Table 3. Conditions for LA (LSX213G2+, CETAC Technologies)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetition frequency</td>
<td>20 Hz</td>
</tr>
<tr>
<td>Spot diameter</td>
<td>4 µm</td>
</tr>
<tr>
<td>Scan rate</td>
<td>4 µm/s</td>
</tr>
<tr>
<td>He-flow 1</td>
<td>500 mL/min</td>
</tr>
<tr>
<td>He-flow 2</td>
<td>300 mL/min</td>
</tr>
<tr>
<td>Additional Ar-flow</td>
<td>400 mL/min</td>
</tr>
</tbody>
</table>
Supplementary Figure 1. Decreased basal respiration in pdr-1 mutants that is not rescued by fpn-1.1 overexpression. Statistical analysis by two-way ANOVA: interaction, ns; genotype, p=0.0738 (trend level); concentration, ns.
REFERENCES

