A joint project of the Graduate School, Peabody College, and the Jean & Alexander Heard Library

Title page for ETD etd-07282010-131839


Type of Document Master's Thesis
Author Cox, Chase Davison
URN etd-07282010-131839
Title Friction Stir Welded magnesium alloy AZ31B in a lap joint configuration
Degree Master of Science
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Alvin Strauss Committee Chair
David DeLapp Committee Member
George Cook Committee Member
Keywords
  • Magnesium
  • Manufacturing
  • CFD
  • Friction Stir Welding
Date of Defense 2010-07-21
Availability unrestricted
Abstract
Friction Stir Welding is a solid state joining process that has been shown to successfully join Mg alloys. However the presence of FSW Mg AZ31B in a lap joint configuration in the literature is largely underrepresented even though the use of this weld geometry is prevalent in the automotive, aerospace and maritime industries. FSW of Mg AZ31B in a lap joint configuration is presented in this thesis. Mg AZ31B was experimentally joined using an array of rotation and traverse speeds with a modified Tri-FluteTM pin design. A computational fluid dynamic (CFD) model was created to simulate the process of joining Mg AZ31B with FSW.

It was found that the strongest weld joints occurred at the high rotation rate of 2000 rpm and the high traverse speed of 21 ipm. Macrosection analysis showed that all of the welds contained joint line remnants that were detrimental to the welds at the lower rotation speed of 1500 rpm. The severity of the joint line remnant increased the presence of the hooking defect. The CFD model provided accurate predictions of the temperature and material flow gradients that support the observations of macrosection analysis. It was found that the nonsymmetrical

temperature and material flow gradients within the weld zone lead to the formation of joint line remnants that can reduce the strength of the joint. The results of this thesis help to fill in the gaps where there is otherwise little to no information regarding the affects of process parameters on weld quality for the FSW of Mg AZ31B in the lap joint configuration.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Cox_Master_Thesis.pdf 42.41 Mb 03:16:20 01:40:58 01:28:21 00:44:10 00:03:46

Browse All Available ETDs by ( Author | Department )

If you have more questions or technical problems, please Contact LITS.