A joint project of the Graduate School, Peabody College, and the Jean & Alexander Heard Library

Title page for ETD etd-07202016-133728


Type of Document Master's Thesis
Author Ajayi, Moyosore
Author's Email Address moyosore.ajayi@vanderbilt.edu
URN etd-07202016-133728
Title Methane and High Volume Hydraulic Fracturing: Quantifying non-point diffuse methane leakage through geochemical surface detection methods
Degree Master of Science
Department Earth and Environmental Sciences
Advisory Committee
Advisor Name Title
John C. Ayers Committee Chair
George M. Hornberger Committee Member
Keywords
  • Enviornmental Impact
  • High Volume Hydraulic Fracturing
  • Methane emissions
  • Greenhouse gases
  • Energy
  • Fossil Fuels
Date of Defense 2016-04-15
Availability restricted
Abstract
Methane (CH₄) in the atmosphere accounts for 18% of the climate warming attributed to greenhouse gases. The majority of CH₄ emitted is due to natural mechanisms (biogenic CH₄), but even the smaller contribution of anthropogenically sourced CH₄ (thermogenic CH₄) will have a deleterious effect on global temperatures. A portion of this human-derived methane stems from the rapid growth in high volume hydraulic fracturing (HVHF) technologies used to procure natural gas from the subsurface. In order to address growing concerns, we measured the flux and carbon isotope composition of CH₄ emitted from the soil into the atmosphere in eastern Tennessee (Morgan

Co.). These measurements were made with cavity ring down spectroscopy (CRDS); CRDS permitted the collection of in situ and rapid (1 Hz) measurements of CH₄ emissions. We designed

our study by making identical sets of measurements at three HVHF wells and four geologically similar corresponding comparison sites, where HVHF activity was absent. The primary objective

was to better understand the strength of the connection between HVHF activity and the increasing concentration greenhouse gases in the atmosphere.

Through measurements made during two different field sessions (10 Oct 2015 and 29 Feb-01 Mar 2016), we found elevated background concentrations (> 2.0 ppm) of CH₄.

Through measurements made during two different field sessions (10 Oct 2015 and 29 Feb-01 Mar 2016), we found elevated background concentrations (> 2.0 ppm) of CH₄ at the test sites relative to the comparison sites. Furthermore, our data, though not significantly different, showed positive CH₄ fluxes (from soil into the atmosphere) at the test sites, whereas CH₄ fluxes were generally negative at comparison sites. These results suggest excess CH₄ in the soil that may be connected

to leakage contributed by HVHF activity. Evidence from stable carbon isotope analysis of the emitted CH₄ supports the conclusion of the presence of thermogenic gas at two of the three wells measured. at the test sites relative to

the comparison sites. Furthermore, our data, though not significantly different, showed positive CH₄ fluxes (from soil into the atmosphere) at the test sites, whereas CH⁴ fluxes were generally negative at comparison sites. These results suggest excess CH₄ in the soil that may be connected to leakage contributed by HVHF activity. Evidence from stable carbon isotope analysis of the emitted CH₄ supports the conclusion of the presence of thermogenic gas at two of the three wells measured.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[campus] Ajayi_MS_Thesis_VandyFormatted.pdf 5.29 Mb 00:24:28 00:12:35 00:11:00 00:05:30 00:00:28
[campus] indicates that a file or directory is accessible from the campus network only.

Browse All Available ETDs by ( Author | Department )

If you have more questions or technical problems, please Contact LITS.