IN VIVO CHARACTERIZATION OF THE ROLE OF
HISTONE DEACETYLASE 3 IN METABOLIC
AND TRANSCRIPTIONAL REGULATION

By

Sarah Kathleen Knutson

Dissertation
Submitted to the Faculty of the
Graduate School of Vanderbilt University
in partial fulfillment of the requirements
for the degree of
DOCTOR OF PHILOSOPHY
in
Biochemistry
August, 2008
Nashville, Tennessee

Approved:
Professor Scott Hiebert
Professor Jennifer Pietenpol
Professor Bruce Carter
Professor Andrew Link
Professor Zu-Wen Sun
ACKNOWLEDGEMENTS

Graduate school has been a 5-year rollercoaster of ups and downs, and there are many thanks to be given out to those who have been there with me through it all. First, I must thank Dr. Scott Hiebert, my advisor, for accepting me to work in his laboratory for an interesting 4 years. Through small lab projects in the beginning, and finally one that was completely outside the realm of the laboratory’s focus, Scott has allowed me to become a very independent scientist, and think critically about the work that has been done, and the work needing to be done. He has taught me how to deal with criticism, especially when it comes to journal editors who do not always see your point of view or may have not even read your paper or grant. I am grateful that he has given me the chance to prove that the work presented in this thesis was not going to be just a small side project for the lab. Although it was not always easy, my experience in Scott’s lab has made me realize things happen for a reason, and have a way of working out in the end.

I also need to acknowledge those members of the Hiebert lab that have been my moral support over the years. First, I would like to thank some previous members who have moved on to new places. My rotation and first small project in the lab were under the guidance of Dr. Isabel Moreno-Mirelles, who tried to teach me Spanish, while I tried to explain the complexity of the English language to her. Dr. Brenda Chyla showed me that you could be a driven scientist while still fulfilling goals in your personal life. Dr. Mike Engel has been a good friend and mentor in regard to scientific approach, as well as always being there for good conversation about any number of topics. All the current members of the Hiebert lab have been a sounding board for both scientific and personal
matters. I would especially like to acknowledge Dr. Srividya Bhaskara, who has been my partner on this Hdac3 project from the very beginning. She has taught me so much about the science of our projects, and there are countless hours we have spent trying to put all the pieces together with our data. I am very fortunate that she has been here to work with me, and has definitely contributed to my graduate school success. I would really like to thank the fellow graduate students who have been here along side me: Tiffany Farmer, Melissa Steapleton, and Aubrey Hunt. We have had a lot of fun times together, and I wish them all luck, success, and happiness in wherever life may take them.

My thesis project would really not have gotten off the ground without the suggestions of my dissertation committee members: Dr. Bruce Carter, Dr. Andrew Link, Dr. Jennifer Pietenpol, and Dr. Zu-Wen Sun. These members were chosen on the basis of my very first assigned project, which happened to change a month or two before my first committee meeting, so I appreciate all of them sticking with me as my project changed at almost every committee meeting. I know it takes a lot of time and effort to be part of an outside student’s thesis work in addition to their own students, so I thank them all for giving me the guidance and suggestions to make my graduate career a successful one. As an unofficial committee member, I really need to thank Dr. Stacey Huppert. She has been there from the initiation of the Hdac3 liver project, and I have really enjoyed working with her and learning from her. She has always been enthusiastic about my work, and I know I never had to be afraid to go to her with questions.

The IGP has allowed me to meet many of my close friends here in graduate school, and although we have gone separate ways in our choices in departments, and now, for post-docs, making it difficult to sometimes keep in touch, I have such great
memories from our years here in Nashville. My friends at home in Ohio have been an endless support network throughout my time here at Vanderbilt. A week never goes by where I do not get a phone call or e-mail from Brigette and Beth, who may not always understand the work I am doing, but are continuously supportive regardless.

Without my family, I know this experience would not have been as gratifying. They have taught me to be strong and persevere through difficult situations, and have given me the support and love I need to do that. I hope I have proven to my brother Matt that there is light at the end of the sometimes-dark tunnel of grad school, and I hope to continue to make my parents, Jim and Kate, proud. Finally, things do have a way of working out in the end, because without being here in graduate school at Vanderbilt, I would not have met my fellow graduate student, and now my husband, Charlie. He has been with me through every up and down graduate school tossed my way, and his patience always surprises me. He fills my life with so much love, laughter, and yes, even thoughtful scientific discussions at the dinner table. I know that if we can make it through writing dissertations back-to-back, we will be able to make it through anything, and I look forward to our many adventures ahead.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xii</td>
</tr>
<tr>
<td>Chapter</td>
<td></td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Nucleosomes</td>
<td>1</td>
</tr>
<tr>
<td>Chromatin</td>
<td>1</td>
</tr>
<tr>
<td>Histones</td>
<td>2</td>
</tr>
<tr>
<td>Heterochromatin and Euchromatin</td>
<td>6</td>
</tr>
<tr>
<td>Genetic Studies</td>
<td>6</td>
</tr>
<tr>
<td>Chemical Studies</td>
<td>7</td>
</tr>
<tr>
<td>A Repeating Unit</td>
<td>9</td>
</tr>
<tr>
<td>Histone Modifications</td>
<td>13</td>
</tr>
<tr>
<td>N-terminal Histone Tails</td>
<td>13</td>
</tr>
<tr>
<td>The Histone Code</td>
<td>15</td>
</tr>
<tr>
<td>Transcriptional Regulation</td>
<td>16</td>
</tr>
<tr>
<td>Replication and Chromosome Condensation</td>
<td>18</td>
</tr>
<tr>
<td>DNA Repair</td>
<td>20</td>
</tr>
<tr>
<td>Histone Acetylation</td>
<td>21</td>
</tr>
<tr>
<td>Histone Deacetylases</td>
<td>24</td>
</tr>
<tr>
<td>Identification and Classification</td>
<td>24</td>
</tr>
<tr>
<td>Class I</td>
<td>25</td>
</tr>
<tr>
<td>Class IIa, IIb, and IV</td>
<td>27</td>
</tr>
<tr>
<td>Class III (Sirtuins)</td>
<td>32</td>
</tr>
<tr>
<td>Inhibitors and Role in Disease</td>
<td>33</td>
</tr>
<tr>
<td>Histone Deacetylase 3</td>
<td>41</td>
</tr>
<tr>
<td>Transcription Factor and Nuclear Receptor Interactions</td>
<td>45</td>
</tr>
<tr>
<td>II. MATERIALS AND METHODS</td>
<td>51</td>
</tr>
<tr>
<td>Cell Culture and Plasmids</td>
<td>51</td>
</tr>
<tr>
<td>In vitro Transcription and Translation</td>
<td>51</td>
</tr>
</tbody>
</table>
Luciferase Assays ... 52
Co-Immunoprecipitation .. 52
Flow Cytometry Analysis .. 53
Methylcellulose Assay (MCA) ... 53
Antibodies ... 53
Generation of Hdac3 Knockout Mice 54
Generation of Liver-specific Hdac3 Knockout Mice 57
In vivo Inhibitor Treatment ... 57
Genotyping of Conditional and Transgenic Hdac3 Deletion Mice 58
Preparation of Bone Marrow and Liver Lysates 59
Histology and Immunohistochemistry 59
Liver DNA and RNA Extraction, Q-RT-PCR, and Microarray Analysis 60
Chromatin Immunoprecipitation (ChIP) 61
Metabolic Analysis .. 65
Transmission Electron Microscopy (TEM) 65

III. REGULATION OF HEMATOPOIETIC TRANSCRIPTION FACTOR
RUNX1 AND BONE MARROW HOMEOSTASIS BY HISTONE
DEACETYLASE 3 .. 66

Background and Significance .. 66
Results .. 69
 Chromatin remodeling enzymes bind RD2 of RUNX1 69
 RUNX1 RD2 is required for transcriptional repression 73
 Conditional deletion of the Runx1 interacting protein Hdac3 in
total bone marrow... 75
 Loss of Hdac3 affects the hematopoietic stem cell compartment.. 77
Discussion .. 79

IV. LIVER-SPECIFIC DELETION OF HISTONE DEACETYLASE 3 DISRUPTS
METABOLIC TRANSCRIPTIONAL NETWORKS 84

Background and Significance .. 84
Results .. 85
 Liver-specific deletion of Hdac3 results in organ hypertrophy ... 85
 Deletion of Hdac3 leads to increased hepatocellular damage 89
 Loss of Hdac3 disrupts metabolic homeostasis 90
 Lipid and cholesterol biosynthesis regulatory genes are
de-repressed after inactivation of Hdac3 94
 Hdac3 inactivation affects histone acetylation 99
 Loss of Hdac3 increases Pparγ expression and activity in
 hepatocytes ... 100
 Inhibition of mTOR affects lipid levels in Alb:Hdac3 Δle mice 103
Discussion .. 106
V. LOSS OF HISTONE DEACETYLASE 3 INCREASES SUSCEPTIBILITY FOR GENOMIC DAMAGE AND DISEASE DEVELOPMENT .. 109

Background and Significance .. 109
Results .. 112

- Prolonged loss of Hdac3 leads to endogenous DNA damage
 and increased sensitivity to irradiation ... 112
- Symptoms of NASH develop in Hdac3-null livers 117
- Liver-specific loss of Hdac3 leads to hepatocellular carcinoma ... 119
Discussion ... 125

VI. SUMMARY AND FUTURE DIRECTIONS ... 129

REFERENCES .. 136
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Schematic of mitosis</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Original purification scheme for histone proteins</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>Genetics of heterochromatin and euchromatin in the mealy bug</td>
<td>8</td>
</tr>
<tr>
<td>4.</td>
<td>Nucleosome structure</td>
<td>12</td>
</tr>
<tr>
<td>5.</td>
<td>The histone fold motif</td>
<td>14</td>
</tr>
<tr>
<td>6.</td>
<td>Post-translational modifications of human histone N-terminal tails</td>
<td>17</td>
</tr>
<tr>
<td>7.</td>
<td>Inhibition of RNA polymerase by deacetylated histones</td>
<td>22</td>
</tr>
<tr>
<td>8.</td>
<td>Regulation of cellular localization of class IIa HDACs</td>
<td>29</td>
</tr>
<tr>
<td>9.</td>
<td>Histone deacetylase inhibitors</td>
<td>36</td>
</tr>
<tr>
<td>10.</td>
<td>SAHA binding at the active site in the Aquifex aeolicus histone deacetylase-like protein (HDLP)</td>
<td>38</td>
</tr>
<tr>
<td>11.</td>
<td>Structural organization of HDAC3</td>
<td>42</td>
</tr>
<tr>
<td>12.</td>
<td>Transcriptional regulation of nuclear receptors</td>
<td>49</td>
</tr>
<tr>
<td>13.</td>
<td>Definition of C-terminal sites in RUNX1 that contact HDAC1 and HDAC3</td>
<td>71</td>
</tr>
<tr>
<td>14.</td>
<td>HDACs and SUV39H1 contact sites within the RUNX1 RD2</td>
<td>72</td>
</tr>
<tr>
<td>15.</td>
<td>RUNX1 binds two separate SUV39H1 domains in vitro</td>
<td>74</td>
</tr>
<tr>
<td>16.</td>
<td>Residues within the RUNX1 RD2 are required for transcriptional repression</td>
<td>75</td>
</tr>
<tr>
<td>17.</td>
<td>Targeting construct for generation of the Hdac3 conditional allele</td>
<td>76</td>
</tr>
<tr>
<td>18.</td>
<td>Down-regulation of Hdac3 expression in total bone marrow of Mx:Hdac3<sup>fl-/</sup> mice</td>
<td>77</td>
</tr>
<tr>
<td>19.</td>
<td>General schematic of murine hematopoiesis</td>
<td>78</td>
</tr>
</tbody>
</table>
41. Expression levels of HCC molecular markers are increased in Hdac3-null liver ... 125
42. Peripheral organs are affected in Alb:Hdac3^{fl/fl} mice which develop HCC 126
43. Presence of nuclear β-catenin in P28 Alb:Hdac3^{0/0} mice ... 134
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Primer sequences for generation of Runx1 Δ379-430 deletion construct</td>
<td>51</td>
</tr>
<tr>
<td>2.</td>
<td>Transgenic and knockout mouse genotyping primer sequences</td>
<td>58</td>
</tr>
<tr>
<td>3.</td>
<td>Q-RT-PCR primer sets</td>
<td>62</td>
</tr>
<tr>
<td>4.</td>
<td>Primer sequences for amplification of designated promoter regions analyzed in ChIP assay</td>
<td>64</td>
</tr>
<tr>
<td>5.</td>
<td>Representative analysis of differentiated hematopoietic lineages in Mx:Hdac3 mice 2 days and 1 week post-injection of pIpC</td>
<td>79</td>
</tr>
<tr>
<td>6.</td>
<td>Quantification of metabolic parameters in Alb:Hdac3 liver tissue</td>
<td>93</td>
</tr>
<tr>
<td>7.</td>
<td>Quantification of metabolic parameters in Alb:Hdac3 serum</td>
<td>94</td>
</tr>
<tr>
<td>8.</td>
<td>Transcriptional changes in Alb:Hdac3$^{fl/-}$ at P17 and P28</td>
<td>97</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

ac- acetylated
ADP- adenine diphosphate
ALL- acute lymphoblastic leukemia
ALT- alanine transaminase
AML- acute myeloid leukemia
ATRA- all-trans retinoic acid
bp- base pair
BrdU- bromodeoxy uridine
CaMK- calcium/calmodulin-dependent protein kinase
CHAP1- cyclic hydroxamic acid-containing peptide
ChIP- chromatin immunoprecipitation
CK2- casein kinase 2
CLP- common lymphoid progenitor
CML- chronic myelogenous leukemia
CMP- common myeloid progenitor
CoA- Coenzyme A
DAD- deacetylase domain
DNA- deoxyribonucleic acid
DNA-PK- deoxyribonucleic acid-protein kinase
DOC- sodium deoxycholate
DSB- double strand break
DTT - dithiothreitol
ECM - extracellular matrix
EDTA - ethylene diamine tetraacetic acid
EM - electron microscopy
ER - estrogen receptor
ESC - embryonic stem cell
EtOH - ethanol
FACS - fluorescent activated cell sorting
GDH - glutamate dehydrogenase
GGT1 - gamma-glutamyl transpeptidase 1
GPS2 - G-protein pathway suppressor 2
GR - glucocorticoid receptor
Gy - gray (measurement of radiation absorption)
H&E - hematoxylin and eosin
HAT - histone acetyltransferase
HCC - hepatocellular carcinoma
HDAC - histone deacetylase
HDI - histone deacetylase inhibitor
HDL - high density lipoprotein
IGF2 - insulin-like growth factor 2
IP - intraperitoneal
IR - irradiation
kDa - kilodalton
LDL- low density lipoprotein
LOH- loss of heterozygosity
LSK- lineage negative/c-kit+/Sca-1+ hematopoietic population
LXR- liver X receptor
MCA-methycellulose assay
MDa- megadalton
MEF- mouse embryonic fibroblast
MEF2- myocyte enhancing factor 2
MetS- metabolic syndrome
MPP- multi-potent progenitor
MTG- myeloid translocation gene
mTOR- mammalian target of rapamycin
MW- molecular weight
N-CoR- nuclear corepressor
NAFLD- non-alcoholic fatty liver disease
NASH- non-alcoholic steatohepatitis
NER- nucleotide excision repair
NES- nuclear export signal
NLS- nuclear localization signal
NMR- nuclear magnetic resonance
NR- nuclear receptor
O/N- overnight
PAS- periodic acid Schiff stain
PDB- protein database
PBS- phosphate buffered saline
PCR- polymerase chain reaction
PEG- polyethylene glycol
PHx- partial hepatectomy
pIpC- polyinosinic acid-polycytidylic acid
PML- promyelogenous leukemia
PMSF- phenylmethanesulphonylfluoride
PPAR- peroxisome proliferator-activated receptor
PPRE- peroxisome proliferators response element
PVDF- polyvinylidene fluoride
Q-PCR- quantitative polymerase chain reaction
Q-RT-PCR- quantitative reverse transcriptase polymerase chain reaction
RD- repression domain
RNA- ribonucleic acid
ROS- reactive oxygen species
RT- room temp
RXR- retinoid X receptor
SAHA- suberoylanilide hydroxamic acid
SANT- Swi3/Ada2/N-CoR/TFIIIB
SDS- sodium dodecyl sulfate
SDS-PAGE- sodium dodecyl sulfate polyacrylamide gel electrophoresis
SIR- silent information regulator
siRNA- small interfering RNA
SMRT- silencing mediator of retinoic and thyroid receptors
SOE- splicing by overlap extension
SUMO- small ubiquitin-like modifier
T₃- thyroid hormone
TBL1- transducin β-like 1
TEM- electron microscopy
TR- thyroid hormone receptor
TSA- trichostatin A
TUNEL- terminal transferase dUTP nick end labeling
TZD- thiazolidinediones
VDR- vitamin D receptor
VPA- valproic acid
WCL- whole cell lysate