ON THE NATURE OF THE SENSORY ARRESTINS OF THE DIPTERAN INSECTS

ANOPHELES GAMBIAE AND DROSOPHILA MELANOGASTER

By

William Benjamin Walker III

Dissertation
Submitted to the Faculty of the
Graduate School of Vanderbilt University
in partial fulfillment of the requirements
for the degree of
DOCTOR OF PHILOSOPHY
in
Neuroscience
May, 2008
Nashville, Tennessee

Approved:
Professor Kendal S. Broadie
Professor Todd R. Graham
Professor Vsevolod V. Gurevich
Professor Laurence J. Zwiebel
To all the teachers, scientists, and leaders

who have encouraged and inspired me

to do my best and give it my all

in spite of the difficulties and challenges

that will always lie ahead,

specifically, Mr. Bruce Cox, biology and chemistry teacher,

La Quinta High School, Westminster, California

and

Dr. John Fyfe, Associate Professor

of Microbiology and Molecular Genetics,

Michigan State University, East Lansing, Michigan
ACKNOWLEDGEMENTS

This work has been made possible by financial support from the National Institutes of Health, including an institutional training grant through the Program in Developmental Biology and RO1 grant awarded to Dr. Laurence Zwiebel, entitled “The Molecular Genetics of Olfaction in Anopheline Mosquitoes” from the National Institute for Deafness and other Communicative Disorders. Additional support has been provided by the Department of Biological Sciences for services provided as a teaching assistant.

I would first like to thank the members of my committee, Dr. Vsevolod Gurevich (chairman), Dr. Kendal Broadie, and Dr. Todd Graham, for guidance throughout the development and execution of my doctoral thesis and dissertation. Much appreciation is given to my mentor, Dr. Laurence Zwiebel, for demonstrating significant patience with me during my trials and tribulations in his laboratory; it was never easy, but has been nonetheless a very rewarding experience. I also thank Dr. David McCauley for allowing me to use his Real Time PCR equipment. From the Neuroscience Graduate Program I thank Dr. Mary Early-Zald, Shirin Pulous, Mary Michael-Woolman, and the Directors of Graduate Study, Drs. Elaine Sanders-Bush and Lou DeFelice, all for making my life as a graduate student that much easier.

To the members of the Zwiebel laboratory, I have grown as an individual and scientist during this process, and you all have been a large part of that. Several individuals warrant specific appreciation here. Jason Pitts, an invaluable resource to me throughout the years, has worn many hats, as a mentor, colleague and friend. Jason has always been there to answer many questions, review manuscripts and this dissertation, and importantly, is a fellow long suffering Chicago Cubs fanatic, which cannot be underestimated. Dr. Elaine M. Smith (formerly C. Elaine Merrill), taught me the black magic of electrophysiology, and even as she left Vanderbilt to pursue her dreams
elsewhere several years ago, has been an esteemed colleague on the arrestin project. Dr Hyung-Wook Kwon and fellow graduate students, Tan Lu and Yuanfeng Xia have provided me with invaluable guidance in learning the *in situ* hybridization protocol.

My experiments could not have been done without assistance in fly maintenance and other related duties performed. I thank Patricia Russell and J. Gray Camp for their involvement with the establishment of transgenic flies and David Rinker and Lujuan Sun for their assistance with electrophysiology experiments. David is perhaps one of the most creative thinkers I have come across in the scientific arena. Special thanks are given to accomplished Postdoctoral Fellows in the laboratory, Drs. Michael Rutzler and Jonathan Bohbot challenging me, on many occasions, to elevate my game. Zhen Li has taught me many valuable time-saving molecular biology tricks, and you cannot thank one person enough for such tings. For all the undergraduates to come through the Zwiebel lab, two deserve mention here, as well. When Dr. Zwiebel told me there was an undergraduate from Iraq available to assist me on my project, I was not sure what to think, but Taha Jan proved to be a very reliable and valuable research assistant during his time in the lab, and moreover, a good friend since then. I also thank Laura Chretien for her friendship and comic relief, especially during the arduous process of writing and organizing this dissertation.

To all my friends, I thank you. From the college years, my best friends, Brandon Zurvalec and Gina Kelley, have played no small part in helping me stay sane from a distance. My graduate school friends, Ryan Delahanty, Kim Norman, Bryan Voss, Abel Alcazar and Chuck Mobley, all fellow IGP classmates, have been here with me throughout. It was when my closest friend here, Ryan, convinced me to join him for 7 AM workouts, three days a week, and we did such for nearly two years, that I realized that the sky’s the limit, as they say.
Lastly, and most importantly, I thank my family, for I would not be here if not for them. My brother Jonathan was here in Nashville as a roommate and friend for nearly four years and I will never forget those times. My parents, Bill Jr. and Theresa Walker have been there for me my entire life, and their love and support are most directly responsible for the heights to which I have risen at this point in time. My sister Vanessa, for she can always be counted on to give me her honest opinion, and my younger sisters Angela and Alyssa, for always reminding me what it is like to be a kid. I can only hope they will one day surpass me in their accomplishments. Finally, my Grandparents, Maryanne and Merlin in Texas, and Loretta in California, for their love, support and keen interest in my life.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION .. ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS .. iii</td>
</tr>
<tr>
<td>LIST OF FIGURES .. viii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS ... ix</td>
</tr>
</tbody>
</table>

Chapter

I. INTRODUCTION .. 1

1. Olfaction in the Mosquito ... 1
2. General Principles of Olfaction .. 5
 - Cellular Organization of the Olfactory System ... 6
 - Odorant Receptors .. 8
 - Cellular and Molecular Determinants of Odor Coding .. 10
 - Projection of Olfactory Information ... 13
 - Olfactory Signal Transduction Cascades ... 15
3. The Arrestins .. 19
 - Deactivation of Olfactory Signal Transduction ... 19
 - Introduction to the Arrestins .. 20
 - Vertebrate Visual Arrestins .. 20
 - Structure/Function Relationships in the Vertebrate Arrestins 21
 - The Vertebrate β-Arrestins .. 26
 - β-Arrestins and Internalization, Recycling and Degradation 26
 - β-Arrestins and Ubiquitination .. 29
 - β-Arrestins and MAPK Signaling Complexes ... 29
 - β-Arrestins and Gene Transcription .. 29
 - β-Arrestins and Non-GPCR Receptors .. 30
 - β-Arrestin Conclusions ... 30
4. Insect Arrestins .. 31

II. A FUNCTIONAL ROLE FOR ANOPHELES GAMBIAE ARRESTIN1 IN OLFATORY SIGNAL TRANSDUCTION ... 34

5. Preface ... 34
6. Introduction .. 34
7. Materials and Methods .. 38
8. Results ... 44
 - Electrophysiology Data ... 46
 - Localization of Transgenic AgArr1 in the Antennae of Rescue Flies 50
 - Real-Time PCR Analysis of AgArr1 mRNA Levels in Transgenic Rescue Animals ... 52
III. AN EXAMINATION OF SPATIAL EXPRESSION PATTERNS OF THE SENSORY ARRESTINS IN THE ANTENNAE OF DROSOPHILA MELANOGASTER .. 58

Preface .. 58
Introduction ... 58
Materials and Methods ... 59
Results .. 62
 Fluorescence in situ Hybridization Studies ... 62
 Transgenic Arrestin Promoter Assays ... 63
Discussion .. 63

IV. TEMPORAL INDUCTION OF TRANSGENIC DMARR1 IN THE ARR1 MUTANT BACKGROUND ... 68

Preface .. 68
Introduction ... 68
Materials and Methods ... 72
Results .. 76
 The Gene Switch System – Induction During Adulthood 76
 The TARGET System- Induction During Adulthood .. 81
 The TARGET System- Induction During Development 83
Discussion .. 85

V. CONCLUSION ... 88

Summary ... 88
 Transgenic Rescue of Drosophila Arrestin1 Mutant Olfactory Phenotype with Anopheles gambiae Arrestin1 Homologue .. 88
 Spatial Expression Patterns of Drosophila Sensory Arrestins in the Antenna .. 89
 Temporally Induced Expression of Transgenic Arrestin 90
Future Directions .. 91
 Spatial Expression Patterns of the Sensory Arrestins in the Antennae ... 92
 Olfactory Physiology Refinement ... 92
 Arrestin Biochemical Interactions ... 93
Closing Words ... 94

REFERENCES ... 95
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Host seeking behaviour mediated by olfaction</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Projection of olfactory information</td>
<td>14</td>
</tr>
<tr>
<td>3.</td>
<td>Proposed models of insect olfactory signal transduction</td>
<td>18</td>
</tr>
<tr>
<td>4.</td>
<td>Diagram of arrestin-mediated receptor deactivation</td>
<td>22</td>
</tr>
<tr>
<td>5.</td>
<td>Basal arrestin structure</td>
<td>24</td>
</tr>
<tr>
<td>6.</td>
<td>β-arrestin functional capabilities</td>
<td>28</td>
</tr>
<tr>
<td>7.</td>
<td>Sensory arrestin protein sequence alignment</td>
<td>45</td>
</tr>
<tr>
<td>8.</td>
<td>AgArr1-mediated rescue of function observed for class-I odorants</td>
<td>48</td>
</tr>
<tr>
<td>9.</td>
<td>AgArr1-mediated rescue of function observed for class-II odorants</td>
<td>48</td>
</tr>
<tr>
<td>10.</td>
<td>Transgenic AgArr1 expressed in Or83b positive olfactory sensory neurons</td>
<td>51</td>
</tr>
<tr>
<td>11.</td>
<td>Expression of transgenic arrestin is quantitatively greater than endogenous wild-type arrestin</td>
<td>53</td>
</tr>
<tr>
<td>12.</td>
<td>GFP Expressed under transgenic control of DmArr1 promoter</td>
<td>64</td>
</tr>
<tr>
<td>13.</td>
<td>Modified Gal4-UAS systems</td>
<td>71</td>
</tr>
<tr>
<td>14.</td>
<td>The Gene Switch system and 1-octanol</td>
<td>77</td>
</tr>
<tr>
<td>15.</td>
<td>The Gene Switch system and heptanoic acid</td>
<td>79</td>
</tr>
<tr>
<td>16.</td>
<td>The Gene Switch system and octyl acetate</td>
<td>79</td>
</tr>
<tr>
<td>17.</td>
<td>The TARGET system and 1-octanol</td>
<td>82</td>
</tr>
<tr>
<td>18.</td>
<td>The TARGET system and heptanoic acid</td>
<td>84</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7TM</td>
<td>seven transmembrane</td>
</tr>
<tr>
<td>β\textsubscript{2}AR</td>
<td>β\textsubscript{2} adrenergic receptor</td>
</tr>
<tr>
<td>AC</td>
<td>adenylyl cyclase</td>
</tr>
<tr>
<td>Arr</td>
<td>arrestin</td>
</tr>
<tr>
<td>AgArr</td>
<td>Anopheles gambiae arrestin</td>
</tr>
<tr>
<td>AgOr</td>
<td>Anopheles gambiae odorant receptor</td>
</tr>
<tr>
<td>AP</td>
<td>alkaline phosphatase</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CNG</td>
<td>cyclic nucleotide gated</td>
</tr>
<tr>
<td>CO\textsubscript{2}</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>DIG</td>
<td>digoxygenin</td>
</tr>
<tr>
<td>DmArr</td>
<td>Drosophila melanogaster arrestin</td>
</tr>
<tr>
<td>DmOr</td>
<td>Drosophila melanogaster odorant receptor</td>
</tr>
<tr>
<td>EAG</td>
<td>electroantennogram</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein isothiocyanate</td>
</tr>
<tr>
<td>FISH</td>
<td>fluorescence in situ hybridization</td>
</tr>
<tr>
<td>G protein</td>
<td>guanine nucleotide-binding protein</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>GPCR</td>
<td>G protein-coupled receptor</td>
</tr>
<tr>
<td>GRK</td>
<td>G protein receptor kinase</td>
</tr>
<tr>
<td>GS</td>
<td>gene switch</td>
</tr>
<tr>
<td>ISH</td>
<td>in situ hybridization</td>
</tr>
</tbody>
</table>
MAPK ... mitogen-activated protein kinase
MOE ... main olfactory epithelium
MGC ... macroglomerular complex
NH₃ ... ammonia
OBP ... odorant binding protein
ODE ... odorant degrading enzyme
OR ... odorant receptor
ORN ... odorant receptor neuron
POD ... peroxidase
PBS ... phosphate buffered saline
PLC ... phospholipase C
RT-PCR ... Real Time PCR
SH3 ... Src kinase Homology 3
SNMP .. sensory neuron membrane protein
SSR ... single sensillium recording
TARGET .. temporal and regional gene expression targeting
UTP ... uridine triphosphate
VNO ... vomeronasal organ