PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR (PPAR) IS REGULATOR OF COLORECTAL CANCER CELL GROWTH AND DIFFERENTIATION

By

Rajnish Anand Gupta

Dissertation
Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY in Cell Biology

May, 2004

Approved By:
Professor Raymond N. DuBois
Professor Al Reynolds
Professor Stephen J. Brandt
ACKNOWLEDGEMENTS

I would like to thank my mother and father, my sister Archana, and my brother Shailen for their unconditional support and encouragement. I would like to thank my graduate thesis advisor, Dr. Raymond DuBois, for all his support, guidance, and patience over the last four years. I have learned a great deal from him, including the importance of identifying meaningful research problems and on how one can successfully integrate clinical and basic science as a physician-scientist. I would also like to thank the members of my thesis advisory committee, Drs. Reynolds, Brandt, Granner, Magnuson, and Crawford for their support and guidance and for always willing to meet with me to discuss my work. All members of the DuBois lab (past and present) provided me with a great deal of help during the last four years, including Jeff Brockman, Chris Williams, Rebecca Shattuck-Brandt, Wade Krause, Sharada Katkuri, Hongmiao Sheng, Jinyi Shao, Radhika Aramandala, and Zhoukhou Zhang. I would in particular like to thank Howard Crawford, whose bench was down the hall from mine and who was always willing to take the time to teach me and help me with my research the many times I wandered down to talk with him. Finally, Pasha Sarraf (Dana Farber Cancer Institute), S. K. Dey (University of Kansas), and Tim Willson (GlaxoSmithKline) were all collaborators on various projects and their involvement has been extremely beneficial to me.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS... ii
LIST OF TABLES.. vi
LIST OF FIGURES... vii

Chapter

I. INTRODUCTION.. 1
 Introduction to the nuclear hormone receptor superfamily.. 1
 NHR binding motifs – the hormone response element... 2
 Classification of NHRs.. 2
 Structure of NHRs.. 5
 Transcriptional activities of NHRs.. 8
 The role of coregulators in NHR function.. 9
 NHR coactivators.. 11
 NHR corepressors.. 12
 The coregulator exchange in NHR function.. 13
 Introduction to peroxisome proliferator-activated receptors....................................... 14
 Overview of PPAR\[\alpha\].. 18
 Overview of PPAR\[\delta\]... 19
 Introduction to PPAR\[\gamma\].. 19
 PPAR\[\gamma\] ligands... 20
 PPAR\[\gamma\] coregulators.. 23
 PPAR\[\gamma\] as a regulator of adipocyte differentiation... 24
 The role of PPAR\[\gamma\] in insulin signaling.. 25
 PPAR\[\gamma\] and the control of cholesterol trafficking in macrophages............................ 27
 PPAR\[\gamma\] and the inflammatory response... 28
 PPAR\[\gamma\] and the control of cell cycle.. 28
 Cyclooxygenases and colorectal cancer.. 29
 Cyclooxygenase and prostaglandin synthesis... 29
 A second cyclooxygenase enzyme.. 31
 NSAIDs and colorectal cancer... 32
 Evidence for a role for COX-2 in colorectal carcinogenesis... 33
 How does COX-2 promote tumor development.. 34
 Summary.. 36

II. METHODS.. 38
 Cell culture... 38
 Nuclear receptor ligands... 38
 Plasmids... 39
 RT-PCR for PPAR subtypes... 40
 Antibodies... 41
 Western blot analysis... 41
<table>
<thead>
<tr>
<th>Detection of PPAR\textgamma protein by IP/Western blot</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transient transfections</td>
<td>42</td>
</tr>
<tr>
<td>Luciferase assays</td>
<td>43</td>
</tr>
<tr>
<td>Cell growth measurements</td>
<td>43</td>
</tr>
<tr>
<td>Anchorage independent growth assay</td>
<td>43</td>
</tr>
<tr>
<td>Tumor growth in athymic mice</td>
<td>44</td>
</tr>
<tr>
<td>Flow cytometry</td>
<td>44</td>
</tr>
<tr>
<td>cDNA microarray screening</td>
<td>44</td>
</tr>
<tr>
<td>Oligonucleotide microarray screening</td>
<td>45</td>
</tr>
<tr>
<td>Northern blot hybridization</td>
<td>46</td>
</tr>
<tr>
<td>cDNA probes for northern blots</td>
<td>48</td>
</tr>
<tr>
<td>Cell aggregation assay</td>
<td>48</td>
</tr>
<tr>
<td>PPAR\textgamma gene mutation detection</td>
<td>49</td>
</tr>
<tr>
<td>Electromobility shift assay</td>
<td>49</td>
</tr>
<tr>
<td>Mammalian two-hybrid</td>
<td>50</td>
</tr>
<tr>
<td>Generation of stable cell lines using retroviral infection</td>
<td>50</td>
</tr>
<tr>
<td>Generation of stable cell lines using plasmid transfection</td>
<td>51</td>
</tr>
<tr>
<td>Immunoprecipitations</td>
<td>51</td>
</tr>
<tr>
<td>In situ hybridization</td>
<td>52</td>
</tr>
</tbody>
</table>

III. ACTIVATION OF PPAR\textgamma INHIBITS COLORECTAL CANCER CELL GROWTH

Introduction

53

Results

54

- PPAR\textgamma expression and transcriptional activity in a panel of human colorectal cancer cell lines
- Activation of PPAR\textgamma inhibits human colorectal cancer cell growth in \textit{vivo}
- Activation of PPAR\textgamma delays cell cycle progression

Conclusion

61

IV. TARGET GENES OF PPAR\textgamma IN COLORECTAL CANCER CELLS

Introduction

62

Results

64

- Evaluation of a cell culture system to monitor PPAR\textgamma target genes
- Identification of PPAR\textgamma target genes using microarrays
- Characterizing the specificity and selectivity of each target gene induction/repression
- Activation of PPAR\textgamma induces an increase in CEA-dependent homotypic aggregation

Conclusion

75

V. A LOSS OF FUNCTION PPAR\textgamma ALLELE IN COLORECTAL CANCER CELLS CAUSED BY A MUTATION THAT DISRUPTS BASAL TRANSCRIPTIONAL REPRESSION

Introduction

77

Results

77

- PPAR\textgamma ligand sensitivity and PPAR\textgamma gene mutations in a panel of human colorectal cancer cell lines
Characterization of K422Q mutant allele.......................... 82
Wild type, but not K422Q, PPARγ can rescue PPARγ ligand
unresponsiveness in resistant cells.................................. 85
The K422Q apo-receptor cannot repress the basal
expression of target genes.. 88
Conclusion.. 92

VI. PPARγ AND TRANSFORMING GROWTH FACTOR β
PATHWAYS INHIBIT COLON EPITHELIAL CELL GROWTH
BY REGULATING LEVELS OF TSC-22................................. 93

Introduction... 93
Results... 95
Cellular response of colorectal cancer cells to PPARγ
and TGF-β1 ... 95
Identification of TSC-22 as a PPARγ and TGF-β target gene in
colon epithelial cells... 95
Transcriptional regulation of TSC-22 by PPARγ and
TGF-β1 ... 100
The ability of PPARγ to induce TSC-22 is
independent of TGF-β1 ... 103
Overexpression of wild type TSC-22 inhibits colon
epithelial cell growth and induces elevated levels of p21.....106
Expression of full-length and mutant TSC-22 constructs.....107
Wild type TSC-22 inhibits cell growth and leads to
increased levels of p21 but not keratin 20 108
Overexpression of dominant negative TSC-22 partially inhibits
PPARγ ligand and TGF-β1 induced growth inhibition
and p21 induction... 109
Conclusion ... 109

VII. DISCUSSION... 112

Activation of PPARγ inhibits colorectal cancer cell growth......112
Target genes of PPARγ in colorectal cancer cells............... 113
A loss of function allele in colorectal cancer cells caused by
mutation that disrupts basal transcriptional repression 117
PPARγ and TGF-β1 pathways inhibit colon epithelial cell growth by
regulating levels of TSC-22... 121

VIII. FUTURE AIMS... 125

Future Aims... 125
Selective PPARγ modulators.. 126

REFERENCES.. 127
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>PPAR target genes with identified PPREs</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Summary of genes induced or repressed after exposure of M-S colon carcinoma</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>cells to the PPAR ligand rosiglitazone</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>PPAR ligand sensitivity and PPAR receptor mutations in a panel of human</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>colorectal cancer cell lines</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>The DNA binding motif of NHRs and NHR classification</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Anatomy of NHRs</td>
<td>7</td>
</tr>
<tr>
<td>3.</td>
<td>Transcriptional activities of NHRs and the coregulatory exchange</td>
<td>11</td>
</tr>
<tr>
<td>4.</td>
<td>Overview of PPARs</td>
<td>15</td>
</tr>
<tr>
<td>5.</td>
<td>PPARγ ligands</td>
<td>20</td>
</tr>
<tr>
<td>6.</td>
<td>Metabolic consequences of PPARγ activation</td>
<td>25</td>
</tr>
<tr>
<td>7.</td>
<td>The cyclooxygenase signaling cascade</td>
<td>29</td>
</tr>
<tr>
<td>8.</td>
<td>PPARγ is expressed and functionally active in colorectal cancer cells</td>
<td>54</td>
</tr>
<tr>
<td>9.</td>
<td>Rosiglitazone inhibits cell growth of colon cancer cells in vitro</td>
<td>55</td>
</tr>
<tr>
<td>10.</td>
<td>The PPARγ selective agonist rosiglitazone inhibits anchorage independent growth of cells that express functional PPARγ</td>
<td>57</td>
</tr>
<tr>
<td>11.</td>
<td>Rosiglitazone reduces the volume of tumors grown in vivo from cells expressing functional PPARγ</td>
<td>59</td>
</tr>
<tr>
<td>12.</td>
<td>PPARγ activation induces G1 cell cycle arrest</td>
<td>60</td>
</tr>
<tr>
<td>13.</td>
<td>PPARγ is expressed and transcriptionally active in the M-S colon carcinoma line</td>
<td>65</td>
</tr>
<tr>
<td>14.</td>
<td>PPARγ specifically and selectively inhibits the growth of the M-S colon carcinoma line</td>
<td>66</td>
</tr>
<tr>
<td>15.</td>
<td>The PPARγ target genes adipopohilin and L-FABP are also targets of PPARα and/or PPARδ</td>
<td>70</td>
</tr>
<tr>
<td>16.</td>
<td>The PPARγ target genes RegIA, Gob-4, NGAL, and keratin 20 are specifically and selectively regulated by PPARγ</td>
<td>71</td>
</tr>
<tr>
<td>17.</td>
<td>PPARγ induces three different members of the CEA family of proteins</td>
<td>73</td>
</tr>
</tbody>
</table>
18. PPARγ ligands induce an increase in CEA-dependent aggregation of M-S colon carcinoma cells................................. 74

19. Expression of PPARγ in human colorectal cancer cell lines................. 80

20. DNA binding and transcriptional activity of K422Q PPARγ.................. 83-4

21. Generation of HCT 15 colorectal cancer cells expressing WT or K422Q PPARγ by retroviral transduction................................. 86

22. Expression of WT, but not K422Q, PPARγ causes the previously resistant HCT 15 cell lines to become sensitive to PPARγ agonist-induced G$_1$ delay and growth inhibition in vitro............................ 87

23. K422Q PPARγ is defective in repressing the basal expression target genes in the absence of exogenous ligand.......................... 89

24. There is no difference between WT and K422Q PPARγ in binding affinity to the corepressors N-CoR or SMRT in solution........... 91

25. The PPARγ ligand rosiglitazone or TGF-β induces growth inhibition and increases in protein levels of p21 in a panel of colon epithelial cell lines... 96-7

26. TSC-22 is a downstream target of both PPARγ and TGF-β in colon epithelial cells... 98

27. TSC-22 is localized to the post-mitotic epithelial compartment of the normal human colon.. 99

28. Time and dose dependent induction of TSC-22 by PPARγ and TGF-β.... 101

29. TSC-22 is a direct target of PPARγ.. 102

30. TSC-22 is specifically and selectively induced by PPARγ.................. 104

31. The induction of TSC-22 by PPARγ is not dependent on an intact TGF-β signaling pathway... 105

32. Dominant negative TSC-22 blocks the ability of PPARγ or TGF-β to induce p21 and inhibit cell growth... 110