A joint project of the Graduate School, Peabody College, and the Jean & Alexander Heard Library

Title page for ETD etd-03042005-102617


Type of Document Dissertation
Author McCauley, Jacob Lee
URN etd-03042005-102617
Title Genetic and phenotypic dissection of autism susceptibility
Degree PhD
Department Molecular Physiology and Biophysics
Advisory Committee
Advisor Name Title
Jonathan L. Haines Committee Chair
Doug P. Mortlock Committee Member
James S. Sutcliffe Committee Member
Jason H. Moore Committee Member
Randy D. Blakely Committee Member
Scott M. Williams Committee Member
Keywords
  • linkage
  • serotonin
  • GABA
  • chromosome 17
  • chromosome 19
  • chromosome 15q11-q13
  • association
  • autism
  • genetics
Date of Defense 2005-02-14
Availability unrestricted
Abstract
Autism is a severe neurodevelopmental disorder characterized by deficits in language and social interaction, and patterns of repetitive and stereotyped behaviors, interests and activities. Evidence indicates that autism has a predominantly genetic etiology, and that as many as fifteen genes may contribute to disease susceptibility. One model suggests autism may result from oligogenic inheritance, with locus heterogeneity, such that different families or individuals possess a different mix of susceptibility alleles. In this dissertation, I present genome-wide linkage studies of autism and traits comprising the aspects of the broader phenotype to identify autism susceptibility loci. I further document detailed molecular and genetic analyses of candidate genes in regions detected by linkage, and in the case of 15q11-q13, as chromosomal duplications found in 1-3% of autism cases. A unifying theme to my dissertation is the focus of genetic studies on genes acting within candidate neurobiological systems suspected of involvement in autism. Genetic analyses include linkage, linkage refinement, construction of detailed linkage disequilibrium (LD) and corresponding haplotype maps across candidate loci, and tests for transmission disequilibrium of single markers and haplotypes. Molecular studies of select candidates aim to identify functional variation on associated alleles; in the absence of association they seek to identify potential rare disease-related variants considering for example evolutionarily conserved sequence. I hypothesize that there are allelic variants, which underlie genetic linkage and/or association to autism and related traits, and these contribute to autism susceptibility through both direct and interactive effects. The goal of this study is to dissect the genetic etiology of autism by leveraging trait-based phenotypic subsets of autism using the approaches and tools I have outlined here.
Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  FINAL_Dissertation_McCauley.pdf 5.32 Mb 00:24:38 00:12:40 00:11:05 00:05:32 00:00:28

Browse All Available ETDs by ( Author | Department )

If you have more questions or technical problems, please Contact LITS.